Create README.md ## ByT5 Small Portuguese Product Reviews #### Model Description This is a finetuned version from ByT5 by Google for Sentimental Analysis from Product Reviews in Portuguese. #### Training data It was trained from products reviews from a Americanas.com. You can found the data here: https://github.com/b2wdigital/b2w-reviews01. #### Training Procedure It was finetuned using the Trainer Class available on the Hugging Face library. For evaluation it was used accuracy, precision, recall and f1 score. ##### Learning Rate: **2e-4** ##### Epochs: **1** ##### Colab for Finetuning: https://colab.research.google.com/drive/1EChTeQkGeXi_52lClBNazHVuSNKEHN2f ##### Colab for Metrics: https://colab.research.google.com/drive/1o4tcsP3lpr1TobtE3Txhp9fllxPWXxlw#scrollTo=PXAoog5vQaTn #### Score: ```python Training Set: 'accuracy': 0.8699743370402053, 'f1': 0.9072110777980404, 'precision': 0.9432919284600922, 'recall': 0.8737887200250071 Test Set: 'accuracy': 0.8680854858365782, 'f1': 0.9058389204786557, 'precision': 0.9420980625799903, 'recall': 0.8722673967229191 Validation Set: 'accuracy': 0.8662624220987031, 'f1': 0.9042450554751569, 'precision': 0.9436194311603322, 'recall': 0.8680250057883769 ``` #### Goals My true intention was totally educational, thus making available a this version of the model as a example for future proposes. How to use ``` python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM import torch if torch.cuda.is_available(): device = torch.device('cuda') else: device = torch.device('cpu') print(device) tokenizer = AutoTokenizer.from_pretrained("HeyLucasLeao/byt5-small-pt-product-reviews") model = AutoModelForSeq2SeqLM.from_pretrained("HeyLucasLeao/byt5-small-pt-product-reviews") model.to(device) def classificar_review(review): inputs = tokenizer([review], padding='max_length', truncation=True, max_length=512, return_tensors='pt') input_ids = inputs.input_ids.to(device) attention_mask = inputs.attention_mask.to(device) output = model.generate(input_ids, attention_mask=attention_mask) pred = np.argmax(output.cpu(), axis=1) dici = {0: 'Review Negativo', 1: 'Review Positivo'} return dici[pred.item()] classificar_review(review) ```