File size: 12,260 Bytes
039e2d9 8302b46 8d85e50 8302b46 8d85e50 8302b46 8d85e50 039e2d9 8302b46 bfe9a84 8302b46 7bbdac1 8c4d7d4 4a1d060 b8acae9 8302b46 1357264 8302b46 8d85e50 8302b46 8d85e50 8302b46 bfe9a84 8302b46 8d85e50 8302b46 8d85e50 8302b46 8d85e50 8302b46 8d85e50 8302b46 8d85e50 8302b46 bfe9a84 8302b46 8d85e50 8302b46 8d85e50 8302b46 8d85e50 8302b46 8d85e50 8302b46 8d85e50 8302b46 bfe9a84 8302b46 8d85e50 8302b46 bfe9a84 8302b46 8d85e50 8302b46 8d85e50 8302b46 8d85e50 8302b46 bfe9a84 8302b46 8d85e50 8302b46 8d85e50 8302b46 8d85e50 8302b46 8d85e50 8302b46 8d85e50 8302b46 8d85e50 8302b46 8d85e50 8302b46 8d85e50 8302b46 8d85e50 bfe9a84 8d85e50 8302b46 8d85e50 8302b46 8d85e50 8302b46 8d85e50 8302b46 8d85e50 8302b46 8d85e50 bfe9a84 8d85e50 8302b46 8d85e50 8302b46 8d85e50 8302b46 8d85e50 8302b46 8d85e50 8302b46 8d85e50 bfe9a84 8d85e50 8302b46 8d85e50 8302b46 8d85e50 8302b46 8d85e50 9842718 8d85e50 94f8e83 8d85e50 bfe9a84 8d85e50 bfe9a84 8d85e50 bfe9a84 8d85e50 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 |
---
license: llama2
datasets:
- HiTZ/euscrawl
language:
- eu
- en
metrics:
- accuracy
- f1
- perplexity
pipeline_tag: text-generation
---
# **Model Card for Latxa 70b**
<p align="center">
<img src="https://github.com/hitz-zentroa/latxa/blob/b9aa705f60ee2cc03c9ed62fda82a685abb31b07/assets/latxa_round.png?raw=true" style="height: 350px;">
</p>
<span style="color: red; font-weight: bold">IMPORTANT:</span> This model is outdated and made available publicly for reproducibility purposes only. Please utilize the most recent version found in [our HuggingFace collection](https://huggingface.co/collections/HiTZ/latxa-65a697e6838b3acc53677304).
Latxa is a collection of foundation models specifically tuned for Basque. Based on Meta’s LLaMA 2 model family, these models were further trained with Euscrawl, a highly curated Basque corpora ([Artetxe et al., 2022](https://aclanthology.org/2022.emnlp-main.499/)). Ranging from 7 billion to 70 billion parameters, these models are currently the biggest and best-performing LLMs built for Basque. This is the 70b repository, links to other models can be found in the [Latxa Collection](https://huggingface.co/collections/HiTZ/latxa-65a697e6838b3acc53677304).
Read more about Latxa in our [website](https://www.hitz.eus/en/node/340) or in [LinkedIn](https://www.linkedin.com/pulse/presenting-latxa-largest-language-model-built-basque-hitz-zentroa-63qdf)!
# **Model Details**
## **Model Description**
Latxa is a family of Large Language Models (LLM) based on Meta’s [LLaMA models](https://huggingface.co/meta-llama). Current LLMs exhibit incredible performance for high-resource languages such as English, but, in the case of Basque and other low-resource languages, their performance is close to a random guesser. These limitations widen the gap between high- and low-resource languages when it comes to digital development. We present Latxa to overcome these limitations and promote the development of LLM-based technology and research for the Basque language. Latxa models follow the same architecture as their original counterparts and were further trained in Euscrawl v1 ([Artetxe et al., 2022](https://aclanthology.org/2022.emnlp-main.499/)), a high-quality Basque corpora.
The models are released in three sizes: 7B, 13B and 70B.
* **Developed by:** HiTZ Research Center & IXA Research group (University of the Basque Country UPV/EHU)
* **Model type:** Language model
* **Language(s) (NLP):** en, eu
* **License:** llama2
* **Parent Model:** meta-llama/Llama-2-70b
* **Contact:** hitz@ehu.eus
## **Getting started**
Use the code below to get started with the model.
```python
from transformers import pipeline
pipe = pipeline("text-generation", model=”HiTZ/latxa-70b-v1”)
text = "Euskara adimen artifizialera iritsi da!"
pipe(text, max_new_tokens=50, num_beams=5)
>> [
{
'generated_text': 'Euskara adimen artifizialera iritsi da!\nEuskararen eta adimen artifizialaren arteko harremana aspaldikoa da,'
' baina azken urteotan aurrerapauso handiak eman dira arlo horretan'
}
]
```
# **Uses**
Latxa models are intended to be used with Basque data; for any other language the performance is not guaranteed. Same as the original, Latxa inherits the [LLaMA-2 License](https://ai.meta.com/llama/license/) which allows for commercial and research use.
## **Direct Use**
Latxa family models are pre-trained LLMs without any task-specific or instruction fine-tuning. That is, the model can either be prompted to perform a specific task or further fine-tuned for specific use cases.
## **Out-of-Scope Use**
The model was not fine-tuned to follow instructions or to work as a chat assistant, therefore, this kind of usage is not tested nor recommended.
# **Bias, Risks, and Limitations**
In an effort to alleviate the potentially disturbing or harmful content, Latxa has been trained on carefully selected and processed data which comes mainly from local media, national/regional newspapers, encyclopedias and blogs (see Euscrawl below). Still, the model is based on LLaMA models and can potentially carry the same bias, risk and limitations.
Please see the LLaMA’s _Ethical Considerations and Limitations _for further information.
# **Training Details**
## **Training Data**
The models were trained on EusCrawl v1, a high-quality corpus for Basque comprising 1.72M documents, 288M words, totalling 2.1GiB of uncompressed text. EusCrawl was built using ad-hoc scrapers to extract text from 33 Basque websites with high-quality content, resulting in cleaner text compared to general-purpose approaches.
See more details in the [EusCrawl](https://huggingface.co/datasets/HiTZ/euscrawl) dataset card.
Additionally, 100K documents of English data randomly selected from the [Pile](https://huggingface.co/datasets/EleutherAI/pile) dataset were also included to avoid catastrophic forgetting.
## **Training Procedure**
The models were trained using the GPT-Neox library on the HPC CINECA computing cluster. All the models were approximately trained with an effective batch size of 2M tokens for 1000 to 2000 steps.
<table>
<tr>
<td>Model
</td>
<td>Steps
</td>
<td>Sequence length
</td>
<td>Effective Batch size
</td>
<td>Total tokens
</td>
<td>GPU hours
</td>
</tr>
<tr>
<td>Latxa 7B
</td>
<td><p style="text-align: right">
2000</p>
</td>
<td><p style="text-align: right">
4096</p>
</td>
<td><p style="text-align: right">
2M tokens/step</p>
</td>
<td><p style="text-align: right">
4B</p>
</td>
<td><p style="text-align: right">
359.2h</p>
</td>
</tr>
<tr>
<td>Latxa 13B
</td>
<td><p style="text-align: right">
1000</p>
</td>
<td><p style="text-align: right">
4096</p>
</td>
<td><p style="text-align: right">
2M tokens/step</p>
</td>
<td><p style="text-align: right">
2B</p>
</td>
<td><p style="text-align: right">
468.8h</p>
</td>
</tr>
<tr>
<td>Latxa 70B
</td>
<td><p style="text-align: right">
1680</p>
</td>
<td><p style="text-align: right">
4096</p>
</td>
<td><p style="text-align: right">
2M tokens/step</p>
</td>
<td><p style="text-align: right">
3.4B</p>
</td>
<td><p style="text-align: right">
*6475.52h</p>
</td>
</tr>
</table>
* indicates the time for the entire training process (2000 steps), however the weights of the step 1680 are shared as it is the best checkpoint according to validation loss.
# **Evaluation**
We evaluated the models on zero-shot and few-shot settings on generative, multiple-choice and classification tasks. We used the basque partitions of each dataset.
## **Testing Data, Factors & Metrics**
### **Testing Data**
* **Belebele** ([Bandarkar et al.](https://arxiv.org/abs/2308.16884)): Belebele is a multiple-choice machine reading comprehension (MRC) dataset spanning 122 language variants. We evaluated the model in a 5-shot fashion.
* Data card: [https://huggingface.co/datasets/facebook/belebele](https://huggingface.co/datasets/facebook/belebele)
* **X-StoryCloze** ([Lin et al.](https://arxiv.org/abs/2112.10668)): XStoryCloze consists of the professionally translated version of the English StoryCloze dataset to 10 non-English languages. Story Cloze is a commonsense reasoning dataset which consists of choosing the correct ending to a four-sentence story. We evaluated the model in a 0-shot fashion.
* Data card: [https://huggingface.co/datasets/juletxara/xstory_cloze](https://huggingface.co/datasets/juletxara/xstory_cloze)
* **BasqueGLUE** ([Urbizu et al.](https://aclanthology.org/2022.lrec-1.172.pdf)): BasqueGLUE is a NLU benchmark for Basque. We evaluated the model in a 5-shot fashion on the following tasks:
* Data card:[ https://huggingface.co/datasets/orai-nlp/basqueGLUE](https://huggingface.co/datasets/orai-nlp/basqueGLUE).
* Tasks:
* **BEC2016eu**: Sentiment analysis on tweets about the 2016 Basque elections campaign.
* **VaxxStance**: Stance detection on tweets around the anti-vaccine movement.
* **BTHCv2**: Topic classification of news extracts with 12 categories.
* **EpecKorrefBin**: Correference detection task similar to WSC.
* **QNLIeu**: Q&A NLI built from the Basque Wikipedia.
* **WiCeu**: Basque Word-in-Context task.
### **Metrics**
* **Accuracy**: Belebele, X-StoryCloze, EpecKorrefBin, QNLI-eu, and, WiC-eu
* **Micro F1**: BEC2016-eu and BHTCv2
* **Macro F1**: VaxxStance (favor & against)
## **Results**
The model was evaluated using the LM Evaluation harness library from Eleuther AI.
In order to reproduce our results please follow the instructions in Latxa's [Github repository](https://github.com/hitz-zentroa/latxa?tab=readme-ov-file#evaluation).
<table>
<tr>
<td><strong>Model</strong>
</td>
<td><strong>Belebele</strong>
</td>
<td><strong>X-StoryCloze</strong>
</td>
<td><strong>BEC</strong>
</td>
<td><strong>Vaxx</strong>
</td>
<td><strong>BHTC</strong>
</td>
<td><strong>coref</strong>
</td>
<td><strong>QNLI</strong>
</td>
<td><strong>WiC</strong>
</td>
<td><strong>Average</strong>
</td>
</tr>
<tr>
<td>Random
</td>
<td>25.00
</td>
<td>50.00
</td>
<td>33.33
</td>
<td>33.33
</td>
<td>8.33
</td>
<td>50.00
</td>
<td>50.00
</td>
<td>50.00
</td>
<td>37.50
</td>
</tr>
<tr>
<td>LLaMA 2 7B
</td>
<td>26.22
</td>
<td>50.43
</td>
<td>41.63
</td>
<td>18.60
</td>
<td>20.06
</td>
<td>50.94
</td>
<td>48.32
</td>
<td>49.64
</td>
<td>38.23
</td>
</tr>
<tr>
<td>LLaMA 2 13B
</td>
<td>32.00
</td>
<td>50.63
</td>
<td>41.09
</td>
<td>18.25
</td>
<td>27.35
</td>
<td>49.23
</td>
<td>48.74
</td>
<td>49.21
</td>
<td>39.56
</td>
</tr>
<tr>
<td>LLaMA 2 70B
</td>
<td>33.56
</td>
<td>51.62
</td>
<td>47.47
</td>
<td>21.01
</td>
<td>31.01
</td>
<td>52.98
</td>
<td>51.26
</td>
<td>51.57
</td>
<td>42.56
</td>
</tr>
<tr>
<td>BLOOM 7B
</td>
<td>27.00
</td>
<td>57.18
</td>
<td>37.94
</td>
<td>20.72
</td>
<td>39.10
</td>
<td>48.21
</td>
<td>47.48
</td>
<td>47.57
</td>
<td>40.65
</td>
</tr>
<tr>
<td>XGLM 7B
</td>
<td>23.88
</td>
<td>57.71
</td>
<td>39.94
</td>
<td>21.58
</td>
<td>36.73
</td>
<td>50.94
</td>
<td>50.42
</td>
<td>49.21
</td>
<td>41.30
</td>
</tr>
<tr>
<td><strong>Latxa 7B</strong>
</td>
<td>35.67
</td>
<td>63.13
</td>
<td>55.61
</td>
<td>45.93
</td>
<td>44.44
</td>
<td>50.43
</td>
<td>55.04
</td>
<td>50.14
</td>
<td>50.05
</td>
</tr>
<tr>
<td><strong>Latxa 13B</strong>
</td>
<td>53.56
</td>
<td>65.85
</td>
<td>53.23
</td>
<td>48.66
</td>
<td><strong>53.61</strong>
</td>
<td>62.52
</td>
<td>57.14
</td>
<td>54.21
</td>
<td>56.10
</td>
</tr>
<tr>
<td><strong>Latxa 70B</strong>
</td>
<td><strong>71.78</strong>
</td>
<td><strong>67.57</strong>
</td>
<td><strong>63.52</strong>
</td>
<td><strong>48.95</strong>
</td>
<td>49.51
</td>
<td><strong>79.90</strong>
</td>
<td><strong>58.82</strong>
</td>
<td><strong>55.50</strong>
</td>
<td><strong>61.94</strong>
</td>
</tr>
</table>
# **Environmental Impact**
Carbon emissions are estimated using the[ Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in[ Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
* **Hardware Type:** HPC Cluster, 4x A100 64Gb nodes
* **Hours used:** 359.2h + 468.8h + 6475.52h = 7303.52h
* **Compute cluster:** CINECA HPC
* **Compute Region:** Italy
* **Carbon Emitted:** 673.75kg CO<sub>2</sub> eq
# **Acknowledgements**
This work has been partially supported by the Basque Government (IKER-GAITU project). The models were trained on the Leonardo supercomputer at CINECA under the EuroHPC Joint Undertaking, project EHPC-EXT-2023E01-013. |