File size: 9,436 Bytes
90f7c1e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
import os, json, argparse, yaml
import numpy as np
from tqdm import tqdm
import librosa

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import DataLoader
from torch.cuda.amp import autocast, GradScaler

from dataset.diffpitch import DiffPitch
from models.transformer import PitchFormer
from utils import minmax_norm_diff, reverse_minmax_norm_diff, save_curve_plot


parser = argparse.ArgumentParser()
parser.add_argument('-config', type=str, default='config/DiffPitch.yaml')

parser.add_argument('-seed', type=int, default=9811)
parser.add_argument('-amp', type=bool, default=False)
parser.add_argument('-compile', type=bool, default=False)

parser.add_argument('-data_dir', type=str, default='data/')
parser.add_argument('-content_dir', type=str, default='world')

parser.add_argument('-train_frames', type=int, default=256)
parser.add_argument('-test_frames', type=int, default=256)
parser.add_argument('-batch_size', type=int, default=32)
parser.add_argument('-test_size', type=int, default=1)
parser.add_argument('-num_workers', type=int, default=4)
parser.add_argument('-lr', type=float, default=5e-5)
parser.add_argument('-weight_decay', type=int, default=1e-6)

parser.add_argument('-epochs', type=int, default=1)
parser.add_argument('-save_every', type=int, default=20)
parser.add_argument('-log_step', type=int, default=100)
parser.add_argument('-log_dir', type=str, default='logs_transformer_pitch')
parser.add_argument('-ckpt_dir', type=str, default='ckpt_transformer_pitch')

args = parser.parse_args()
args.save_ori = True
config = yaml.load(open(args.config), Loader=yaml.FullLoader)
mel_cfg = config['logmel']
ddpm_cfg = config['ddpm']
# unet_cfg = config['unet']


def RMSE(gen_f0, gt_f0):
    # Get voiced part
    gt_f0 = gt_f0[0]
    gen_f0 = gen_f0[0]

    nonzero_idxs = np.where((gen_f0 != 0) & (gt_f0 != 0))[0]
    gen_f0_voiced = np.log2(gen_f0[nonzero_idxs])
    gt_f0_voiced = np.log2(gt_f0[nonzero_idxs])
    # log F0 RMSE
    if len(gen_f0_voiced) != 0:
        f0_rmse = np.sqrt(np.mean((gen_f0_voiced - gt_f0_voiced) ** 2))
    else:
        f0_rmse = 0
    return f0_rmse


if __name__ == "__main__":
    torch.manual_seed(args.seed)
    np.random.seed(args.seed)
    if torch.cuda.is_available():
        args.device = 'cuda'
        torch.cuda.manual_seed(args.seed)
        torch.cuda.manual_seed_all(args.seed)
        torch.backends.cuda.matmul.allow_tf32 = True
        if torch.backends.cudnn.is_available():
            torch.backends.cudnn.deterministic = True
            torch.backends.cudnn.benchmark = True
    else:
       args.device = 'cpu'

    if os.path.exists(args.log_dir) is False:
        os.makedirs(args.log_dir)

    if os.path.exists(args.ckpt_dir) is False:
        os.makedirs(args.ckpt_dir)

    print('Initializing data loaders...')
    trainset = DiffPitch('data/', 'train', args.train_frames, shift=True)
    train_loader = DataLoader(trainset, batch_size=args.batch_size, num_workers=args.num_workers,
                              drop_last=True, shuffle=True)

    val_set = DiffPitch('data/', 'val', args.test_frames, shift=True)
    val_loader = DataLoader(val_set, batch_size=1, shuffle=False)

    test_set = DiffPitch('data/', 'test', args.test_frames, shift=True)
    test_loader = DataLoader(test_set, batch_size=1, shuffle=False)

    real_set = DiffPitch('data/', 'real', args.test_frames, shift=False)
    read_loader = DataLoader(real_set, batch_size=1, shuffle=False)

    print('Initializing and loading models...')
    model = PitchFormer(mel_cfg['n_mels'], 512).to(args.device)
    ckpt = torch.load('ckpt_transformer_pitch/transformer_pitch_460.pt')
    model.load_state_dict(ckpt)

    print('Initializing optimizers...')
    optimizer = torch.optim.AdamW(params=model.parameters(), lr=args.lr, weight_decay=args.weight_decay)
    scaler = GradScaler()

    if args.compile:
        model = torch.compile(model)

    print('Start training.')
    global_step = 0
    for epoch in range(1, args.epochs + 1):
        print(f'Epoch: {epoch} [iteration: {global_step}]')
        model.train()
        losses = []

        for step, batch in enumerate(tqdm(train_loader)):
            optimizer.zero_grad()
            mel, midi, f0 = batch
            mel = mel.to(args.device)
            midi = midi.to(args.device)
            f0 = f0.to(args.device)

            if args.amp:
                with autocast():
                    f0_pred = model(sp=mel, midi=midi)
                    loss = F.mse_loss(f0_pred, f0)
                scaler.scale(loss).backward()
                scaler.step(optimizer)
                scaler.update()
            else:
                f0_pred = model(sp=mel, midi=midi)
                loss = F.l1_loss(f0_pred, f0)
                # Backward propagation
                loss.backward()
                optimizer.step()

            losses.append(loss.item())
            global_step += 1

            if global_step % args.log_step == 0:
                losses = np.asarray(losses)
                # msg = 'Epoch %d: loss = %.4f\n' % (epoch, np.mean(losses))
                msg = '\nEpoch: [{}][{}]\t' \
                      'Batch: [{}][{}]\tLoss: {:.6f}\n'.format(epoch,
                                                               args.epochs,
                                                               step+1,
                                                               len(train_loader),
                                                               np.mean(losses))
                with open(f'{args.log_dir}/train_dec.log', 'a') as f:
                    f.write(msg)
                losses = []

        if epoch % args.save_every > 0:
            continue

        print('Saving model...\n')
        ckpt = model.state_dict()
        torch.save(ckpt, f=f"{args.ckpt_dir}/transformer_pitch_{epoch}.pt")

        print('Inference...\n')
        model.eval()
        with torch.no_grad():
            val_loss = []
            val_rmse = []
            for i, batch in enumerate(val_loader):
                # optimizer.zero_grad()
                mel, midi, f0 = batch
                mel = mel.to(args.device)
                midi = midi.to(args.device)
                f0 = f0.to(args.device)

                f0_pred = model(sp=mel, midi=midi)

                # save pred
                f0_pred[f0_pred < librosa.note_to_hz('C2')] = 0
                f0_pred[f0_pred > librosa.note_to_hz('C6')] = librosa.note_to_hz('C6')

                val_loss.append(F.l1_loss(f0_pred, f0).item())
                val_rmse.append(RMSE(f0_pred.cpu().numpy(), f0.cpu().numpy()))

                if i <= 4:
                    save_path = f'{args.log_dir}/pic/{i}/{epoch}_val.png'
                    if os.path.exists(os.path.dirname(save_path)) is False:
                        os.makedirs(os.path.dirname(save_path))
                    save_curve_plot(f0_pred.cpu().squeeze(), midi.cpu().squeeze(), f0.cpu().squeeze(), save_path)
                # else:
                #     break

            msg = '\nEpoch: [{}][{}]\tLoss: {:.6f}\tRMSE:{:.6f}\n'.\
                format(epoch, args.epochs, np.mean(val_loss), np.mean(val_rmse))
            with open(f'{args.log_dir}/eval_dec.log', 'a') as f:
                f.write(msg)

            test_loss = []
            test_rmse = []
            for i, batch in enumerate(test_loader):
                # optimizer.zero_grad()
                mel, midi, f0 = batch
                mel = mel.to(args.device)
                midi = midi.to(args.device)
                f0 = f0.to(args.device)

                f0_pred = model(sp=mel, midi=midi)

                # save pred
                f0_pred[f0_pred < librosa.note_to_hz('C2')] = 0
                f0_pred[f0_pred > librosa.note_to_hz('C6')] = librosa.note_to_hz('C6')

                test_loss.append(F.l1_loss(f0_pred, f0).item())
                test_rmse.append(RMSE(f0_pred.cpu().numpy(), f0.cpu().numpy()))

                if i <= 4:
                    save_path = f'{args.log_dir}/pic/{i}/{epoch}_test.png'
                    if os.path.exists(os.path.dirname(save_path)) is False:
                        os.makedirs(os.path.dirname(save_path))
                    save_curve_plot(f0_pred.cpu().squeeze(), midi.cpu().squeeze(), f0.cpu().squeeze(), save_path)

            msg = '\nEpoch: [{}][{}]\tLoss: {:.6f}\tRMSE:{:.6f}\n'. \
                format(epoch, args.epochs, np.mean(test_loss), np.mean(test_rmse))
            with open(f'{args.log_dir}/test_dec.log', 'a') as f:
                f.write(msg)

            for i, batch in enumerate(read_loader):
                # optimizer.zero_grad()
                mel, midi, f0 = batch
                mel = mel.to(args.device)
                midi = midi.to(args.device)
                f0 = f0.to(args.device)

                f0_pred = model(sp=mel, midi=midi)
                f0_pred[f0 == 0] = 0

                # save pred
                f0_pred[f0_pred < librosa.note_to_hz('C2')] = 0
                f0_pred[f0_pred > librosa.note_to_hz('C6')] = librosa.note_to_hz('C6')

                save_path = f'{args.log_dir}/pic/{i}/{epoch}_real.png'
                if os.path.exists(os.path.dirname(save_path)) is False:
                    os.makedirs(os.path.dirname(save_path))
                save_curve_plot(f0_pred.cpu().squeeze(), midi.cpu().squeeze(), f0.cpu().squeeze(), save_path)