|
|
|
|
|
from multiprocessing import Process |
|
import os |
|
import numpy as np |
|
import pandas as pd |
|
import librosa |
|
from librosa.core import load |
|
from tqdm import tqdm |
|
|
|
|
|
def get_f0(wav_path): |
|
wav, _ = load(wav_path, sr=24000) |
|
wav = wav[:(wav.shape[0] // 256) * 256] |
|
wav = np.pad(wav, 384, mode='reflect') |
|
f0, _, _ = librosa.pyin(wav, frame_length=1024, hop_length=256, center=False, |
|
fmin=librosa.note_to_hz('C2'), |
|
fmax=librosa.note_to_hz('C6')) |
|
return np.nan_to_num(f0) |
|
|
|
|
|
def chunks(arr, m): |
|
result = [[] for i in range(m)] |
|
for i in range(len(arr)): |
|
result[i%m].append(arr[i]) |
|
return result |
|
|
|
|
|
def extract_f0(subset): |
|
meta = pd.read_csv('../raw_data/meta_fix.csv') |
|
meta = meta[meta['subset'] == 'train'] |
|
|
|
|
|
for i in tqdm(subset): |
|
line = meta.iloc[i] |
|
audio_dir = '../raw_data/' + line['folder'] + line['subfolder'] |
|
f = line['file_name'] |
|
|
|
f0_dir = audio_dir.replace('vocal', 'f0').replace('raw_data/', '24k_data_f0/') |
|
|
|
try: |
|
np.load(os.path.join(f0_dir, f+'.npy')) |
|
except: |
|
print(line) |
|
f0 = get_f0(os.path.join(audio_dir, f)) |
|
if os.path.exists(f0_dir) is False: |
|
os.makedirs(f0_dir, exist_ok=True) |
|
np.save(os.path.join(f0_dir, f + '.npy'), f0) |
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__': |
|
cores = 8 |
|
meta = pd.read_csv('../raw_data/meta_fix.csv') |
|
meta = meta[meta['subset']=='train'] |
|
|
|
|
|
idx_list = [i for i in range(len(meta))] |
|
|
|
subsets = chunks(idx_list, cores) |
|
|
|
for subset in subsets: |
|
t = Process(target=extract_f0, args=(subset,)) |
|
t.start() |
|
|