Diff-Pitcher / score_based_apc.py
jerryhai
Track binary files with Git LFS
90f7c1e
import os.path
import numpy as np
import pandas as pd
import torch
import yaml
import librosa
import soundfile as sf
from tqdm import tqdm
from diffusers import DDIMScheduler
from pitch_controller.models.unet import UNetPitcher
from pitch_controller.utils import minmax_norm_diff, reverse_minmax_norm_diff
from pitch_controller.modules.BigVGAN.inference import load_model
from utils import get_mel, get_world_mel, get_f0, f0_to_coarse, show_plot, get_matched_f0, log_f0
from pitch_predictor.models.transformer import PitchFormer
import pretty_midi
def prepare_midi_wav(wav_id, midi_id, sr=24000):
midi = pretty_midi.PrettyMIDI(midi_id)
roll = midi.get_piano_roll()
roll = np.pad(roll, ((0, 0), (0, 1000)), constant_values=0)
roll[roll > 0] = 100
onset = midi.get_onsets()
before_onset = list(np.round(onset * 100 - 1).astype(int))
roll[:, before_onset] = 0
wav, sr = librosa.load(wav_id, sr=sr)
start = 0
end = round(100 * len(wav) / sr) / 100
# save audio
wav_seg = wav[round(start * sr):round(end * sr)]
cur_roll = roll[:, round(100 * start):round(100 * end)]
return wav_seg, cur_roll
def algin_mapping(content, target_len):
# align content with mel
src_len = content.shape[-1]
target = torch.zeros([content.shape[0], target_len], dtype=torch.float).to(content.device)
temp = torch.arange(src_len+1) * target_len / src_len
for i in range(target_len):
cur_idx = torch.argmin(torch.abs(temp-i))
target[:, i] = content[:, cur_idx]
return target
def midi_to_hz(midi):
idx = torch.zeros(midi.shape[-1])
for frame in range(midi.shape[-1]):
midi_frame = midi[:, frame]
non_zero = midi_frame.nonzero()
if len(non_zero) != 0:
hz = librosa.midi_to_hz(non_zero[0])
idx[frame] = torch.tensor(hz)
return idx
@torch.no_grad()
def score_pitcher(source, pitch_ref, model, hifigan, pitcher, steps=50, shift_semi=0, mask_with_source=False):
wav, midi = prepare_midi_wav(source, pitch_ref, sr=sr)
source_mel = get_world_mel(None, sr=sr, wav=wav)
midi = torch.tensor(midi, dtype=torch.float32)
midi = algin_mapping(midi, source_mel.shape[-1])
midi = midi_to_hz(midi)
f0_ori = np.nan_to_num(get_f0(source))
source_mel = torch.from_numpy(source_mel).float().unsqueeze(0).to(device)
f0_ori = torch.from_numpy(f0_ori).float().unsqueeze(0).to(device)
midi = midi.unsqueeze(0).to(device)
f0_pred = pitcher(sp=source_mel, midi=midi)
if mask_with_source:
# mask unvoiced frames based on original pitch estimation
f0_pred[f0_ori == 0] = 0
f0_pred = f0_pred.cpu().numpy()[0]
# limit range
f0_pred[f0_pred < librosa.note_to_hz('C2')] = 0
f0_pred[f0_pred > librosa.note_to_hz('C6')] = librosa.note_to_hz('C6')
f0_pred = f0_pred * (2 ** (shift_semi / 12))
f0_pred = log_f0(f0_pred, {'f0_bin': 345,
'f0_min': librosa.note_to_hz('C2'),
'f0_max': librosa.note_to_hz('C#6')})
f0_pred = torch.from_numpy(f0_pred).float().unsqueeze(0).to(device)
noise_scheduler = DDIMScheduler(num_train_timesteps=1000)
generator = torch.Generator(device=device).manual_seed(2024)
noise_scheduler.set_timesteps(steps)
noise = torch.randn(source_mel.shape, generator=generator, device=device)
pred = noise
source_x = minmax_norm_diff(source_mel, vmax=max_mel, vmin=min_mel)
for t in tqdm(noise_scheduler.timesteps):
pred = noise_scheduler.scale_model_input(pred, t)
model_output = model(x=pred, mean=source_x, f0=f0_pred, t=t, ref=None, embed=None)
pred = noise_scheduler.step(model_output=model_output,
timestep=t,
sample=pred,
eta=1, generator=generator).prev_sample
pred = reverse_minmax_norm_diff(pred, vmax=max_mel, vmin=min_mel)
pred_audio = hifigan(pred)
pred_audio = pred_audio.cpu().squeeze().clamp(-1, 1)
return pred_audio
if __name__ == '__main__':
min_mel = np.log(1e-5)
max_mel = 2.5
sr = 24000
use_gpu = torch.cuda.is_available()
device = 'cuda' if use_gpu else 'cpu'
# load diffusion model
config = yaml.load(open('pitch_controller/config/DiffWorld_24k.yaml'), Loader=yaml.FullLoader)
mel_cfg = config['logmel']
ddpm_cfg = config['ddpm']
unet_cfg = config['unet']
model = UNetPitcher(**unet_cfg)
unet_path = 'ckpts/world_fixed_40.pt'
state_dict = torch.load(unet_path)
for key in list(state_dict.keys()):
state_dict[key.replace('_orig_mod.', '')] = state_dict.pop(key)
model.load_state_dict(state_dict)
if use_gpu:
model.cuda()
model.eval()
# load vocoder
hifi_path = 'ckpts/bigvgan_24khz_100band/g_05000000.pt'
hifigan, cfg = load_model(hifi_path, device=device)
hifigan.eval()
# load pitch predictor
pitcher = PitchFormer(100, 512).to(device)
ckpt = torch.load('ckpts/ckpt_transformer_pitch/transformer_pitch_360.pt')
pitcher.load_state_dict(ckpt)
pitcher.eval()
pred_audio = score_pitcher('examples/score_vocal.wav', 'examples/score_midi.midi', model, hifigan, pitcher, steps=50)
sf.write('output_score.wav', pred_audio, samplerate=sr)