File size: 2,816 Bytes
33e67ab fcd8c0b 33e67ab fcd8c0b 33e67ab fcd8c0b 19762d9 33e67ab 497c689 fcd8c0b 150e2f5 fcd8c0b 1fc86a1 fcd8c0b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 |
---
library_name: transformers
license: mit
language:
- ja
base_model:
- google/gemma-2-9b
datasets:
- DeL-TaiseiOzaki/Tengentoppa-sft-v1.0
---
## Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a π€ transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** Hiroaki Hara(@Himalayan-wildcat)
- **Language(s) (NLP):** ja
- **License:** MIT
- **Finetuned from model:** Himalayan-wildcat/gemma-2-9b-finetune
- **Datasets:** DeL-TaiseiOzaki/Tengentoppa-sft-v1.0
## Uses
```
pip install peft~=0.14 tqdm~=4.67 transformers~=4.47
```
```Python
import json
import re
import torch
from peft import PeftModel
from tqdm import tqdm
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
BitsAndBytesConfig,
)
model_id = "Himalayan-wildcat/gemma-2-9b-finetune"
hf_token = "/YOUR_HUGGING_FACE_TOKEN/"
test_jsonl_data = "elyza-tasks-100-TV_0.jsonl"
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16)
model = AutoModelForCausalLM.from_pretrained(
model_id,
quantization_config=bnb_config,
device_map="auto",
token = hf_token)
tokenizer = AutoTokenizer.from_pretrained(
model_id,
trust_remote_code=True,
token=hf_token)
datasets = []
with open(test_jsonl_data) as f:
item = ""
for line in f:
line = line.strip()
item += line
if item.endswith("}"):
datasets.append(json.loads(item))
item = ""
results = []
for data in tqdm(datasets):
input_: str = data["input"]
prompt = f"""
[θ¦δ»Ά]
- δΈγγγγθ³ͺεγ¨εγθ¨θͺγ§εηγγγ¦γγ γγγ
- εηγεγγγͺγε ΄εγ―γθε½γγγγγεγγγΎγγγγγ¨εηγγγ¦γγ γγγ
[θ³ͺε]
{input_}
[εη]"""
tokenized_input = tokenizer(prompt, return_tensors="pt").to("cuda")
with torch.no_grad():
generated_ids = model.generate(
tokenized_input.input_ids,
attention_mask=tokenized_input.attention_mask,
max_new_tokens=500,
do_sample=False,
repetition_penalty=1.2,
pad_token_id=tokenizer.eos_token_id)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(tokenized_input.input_ids, generated_ids)
]
output = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
results.append({"task_id": data["task_id"], "input": input_, "output": output})
jsonl_id = re.sub(".*/", "", model_id)
with open(f"./{jsonl_id}-outputs.jsonl", 'w', encoding='utf-8') as f:
for result in results:
json.dump(result, f, ensure_ascii=False)
f.write('\n')
``` |