--- library_name: transformers license: mit language: - ja base_model: - google/gemma-2-9b datasets: - DeL-TaiseiOzaki/Tengentoppa-sft-v1.0 --- ## Model Description This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** Hiroaki Hara(@Himalayan-wildcat) - **Language(s) (NLP):** ja - **License:** MIT - **Finetuned from model:** Himalayan-wildcat/gemma-2-9b-finetune - **Datasets:** DeL-TaiseiOzaki/Tengentoppa-sft-v1.0 ## Uses ```Python import json import re import torch from peft import PeftModel from tqdm import tqdm from transformers import ( AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, ) model_id = "Himalayan-wildcat/gemma-2-9b-finetune" hf_token = "YOUR HUGGINGFACE TOKEN" test_jsonl_data = "elyza-tasks-100-TV_0.jsonl" bnb_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.bfloat16) model = AutoModelForCausalLM.from_pretrained( model_id, quantization_config=bnb_config, device_map="auto", token = hf_token) tokenizer = AutoTokenizer.from_pretrained( model_id, trust_remote_code=True, token=hf_token) datasets = [] with open(test_jsonl_data) as f: item = "" for line in f: line = line.strip() item += line if item.endswith("}"): datasets.append(json.loads(item)) item = "" results = [] for data in tqdm(test_datasets): input_: str = data["input"] prompt = f""" [要仢] - δΈŽγˆγ‚‰γ‚ŒγŸθ³ͺε•γ¨εŒγ˜θ¨€θͺžγ§ε›žη­”をしてください。 - ε›žη­”γŒεˆ†γ‹γ‚‰γͺγ„ε ΄εˆγ―γ€θ™šε½γ‚’γ›γšγ€γ€Œεˆ†γ‹γ‚ŠγΎγ›γ‚“γ€‚γ€γ¨ε›žη­”γ‚’γ—γ¦γγ γ•γ„γ€‚ [θ³ͺ問] {input_} [ε›žη­”]""" tokenized_input = tokenizer(prompt, return_tensors="pt").to("cuda") with torch.no_grad(): generated_ids = model.generate( tokenized_input.input_ids, attention_mask=tokenized_input.attention_mask, max_new_tokens=500, do_sample=False, repetition_penalty=1.2, pad_token_id=tokenizer.eos_token_id) generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(tokenized_input.input_ids, generated_ids) ] output = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] results.append({"task_id": data["task_id"], "input": input_, "output": output}) jsonl_id = re.sub(".*/", "", model_id) with open(f"./{jsonl_id}-outputs.jsonl", 'w', encoding='utf-8') as f: for result in results: json.dump(result, f, ensure_ascii=False) f.write('\n') ```