{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f6d191daa00>"}, "verbose": 1, "policy_kwargs": {":type:": "", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1685352859924276779, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAN7TwD8SAsg+lEZHPrdLwT+YmOE/Uby6v9KGpj97yDm/GumFvh561z6qNPI9ASJpvf+SsT9Pbdi+iDR5vkKJGEDTTq2+pAd+P10uAD917Gw/Eyhrv9cUmz9ObCS+qGK+v9OUdr9Kp+O/CIGpPls15r/x2B0/XbtDP8KxVb7IzkM/IW9gPzyXO8C7blM/RkPEvqaDO77RJ78+MDo4P52R6j8Bvdc+kMrUvy0oBL8icMA/BAKUvj0Wyr3VMQI/1UgGPvVpGr9q6qs/pV2tvpOpP7/TlHa/SqfjvwiBqT4wVw4/mP2uPymvgD5qcJ4+4C0OPwMS+j8sgA+/avYOPyEmY7+vnCc+WsLHPupJBD9v6Wo+M05HP2hlOT8UrM6+UzFFP/AVb77ERxBAzFy3Pv2f4Dx4QZa/+sa4PuCvSz91/7C/05R2vyXwDz8Igak+MFcOP8/yED8Jhgs/uoxAPRf5fz4CCCk/JQmCwIfSBT+0THA+qtwDP2nDaT0y2qs/y1I3PwnhNT5L5S/AcG/qvvI63T7NYEQ+Qlm/PlaVH77H10q/RywWPjY81T8x1xm/09Lmv9OUdr9Kp+O/CIGpPls15r+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAD9Y4+2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAMoOavQAAAABzKNu/AAAAAP6yAjoAAAAA63njPwAAAABBNu+9AAAAAHQi7z8AAAAAr1IKPgAAAABngN+/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0t6qNQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgCGudD0AAAAAmpf5vwAAAACjzZg9AAAAAIcX9T8AAAAAdd8avAAAAADQKf0/AAAAAOPhQ70AAAAAArvhvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIllAbcAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIB2QJo9AAAAAOHn+b8AAAAA+lcFvgAAAAAG+PI/AAAAANNe+70AAAAAshTtPwAAAAD/8+M7AAAAAPCL6r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAz8Oe2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACADX4CvQAAAABlTve/AAAAABCqBr4AAAAAXef4PwAAAACJRui9AAAAAI4p8D8AAAAAhYCtPQAAAACa+e+/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJ4KRAC4jKSMAWyUTegDjAF0lEdAtBu07V8TjHV9lChoBkdAnq+jY287IWgHTegDaAhHQLQcZ/iYLLJ1fZQoaAZHQJ4WCFHrhR9oB03oA2gIR0C0HHMYyfthdX2UKGgGR0CfmxlANXo1aAdN6ANoCEdAtB0j3pOernV9lChoBkdAnovXuy/sV2gHTegDaAhHQLQjw0OVgQZ1fZQoaAZHQJ7Hws189fVoB03oA2gIR0C0JOthJAdGdX2UKGgGR0Cdkj71Iy0saAdN6ANoCEdAtCT7/2kBS3V9lChoBkdAnFnLtiQT22gHTegDaAhHQLQmDrcCYC11fZQoaAZHQJrOmUwBYFJoB03oA2gIR0C0K6V9fCyhdX2UKGgGR0Cf3MF7Uoa2aAdN6ANoCEdAtCxZew9q13V9lChoBkdAn5NB+jM3ZWgHTegDaAhHQLQsZiCrcTJ1fZQoaAZHQJqtdCKJl8RoB03oA2gIR0C0LRt9+gDidX2UKGgGR0Cfhd8P4EfUaAdN6ANoCEdAtDN/5+H8CXV9lChoBkdAoJT/20zCUGgHTegDaAhHQLQ0o+dsi0R1fZQoaAZHQJ9o6tga3qloB03oA2gIR0C0NLUdV/+bdX2UKGgGR0CfdnJ7b+LnaAdN6ANoCEdAtDXJhkRSP3V9lChoBkdAnQmqqXF98mgHTegDaAhHQLQ7eg+hXbN1fZQoaAZHQJ3KRUn5SFZoB03oA2gIR0C0PC2I9C/odX2UKGgGR0Ccqf/y5I6KaAdN6ANoCEdAtDw3nnuAqnV9lChoBkdAnRXI/A0sOGgHTegDaAhHQLQ86S5iExt1fZQoaAZHQJuBCfseGPBoB03oA2gIR0C0Qx7EtNBXdX2UKGgGR0CZPWlJpWWAaAdN6ANoCEdAtEQ5nscABHV9lChoBkdAmtHtv4ubqmgHTegDaAhHQLRESkCV8kV1fZQoaAZHQJkHOYWtU4toB03oA2gIR0C0RWWyHEdedX2UKGgGR0CZdddDYywfaAdN6ANoCEdAtEtbRCx/u3V9lChoBkdAm5UcIeHSGGgHTegDaAhHQLRMENyo4uN1fZQoaAZHQJvbtOh0yQBoB03oA2gIR0C0TBu9zwMIdX2UKGgGR0CZEuZmZmZmaAdN6ANoCEdAtEzOjrRjSXV9lChoBkdAmwfD4593KWgHTegDaAhHQLRSqn3L3bp1fZQoaAZHQJRbIpQUHptoB03oA2gIR0C0U7YAS39adX2UKGgGR0CZ66Cw8nuzaAdN6ANoCEdAtFPGdsi0OXV9lChoBkdAm89CLQ5WBGgHTegDaAhHQLRU3vM8ox51fZQoaAZHQJzZPrB0p3JoB03oA2gIR0C0WwkC/47BdX2UKGgGR0CbY1hsImgKaAdN6ANoCEdAtFvMphF3IXV9lChoBkdAmzFcUAT7EmgHTegDaAhHQLRb14sEq2B1fZQoaAZHQJnWyLqD9O1oB03oA2gIR0C0XIMpb2UTdX2UKGgGR0CYLYzvqkdnaAdN6ANoCEdAtGI3wYtQK3V9lChoBkdAnUOJTQ3PzGgHTegDaAhHQLRjN3/xUed1fZQoaAZHQJwEIfKZDzBoB03oA2gIR0C0Y0aK1og3dX2UKGgGR0CbaUIjnmq6aAdN6ANoCEdAtGRa3AmAsnV9lChoBkdAmpolYp2ECmgHTegDaAhHQLRq99oexOd1fZQoaAZHQJvZzv1DjR5oB03oA2gIR0C0a66Pjn3ddX2UKGgGR0CcWwhA4XGfaAdN6ANoCEdAtGu5uzhP03V9lChoBkdAnEFpXZGrj2gHTegDaAhHQLRsbpgTh5x1fZQoaAZHQJvoNMFlkH5oB03oA2gIR0C0cd49HMEBdX2UKGgGR0CeY0OLiuMdaAdN6ANoCEdAtHLjr6ciGHV9lChoBkdAnyStMXaakWgHTegDaAhHQLRy8sSCe3B1fZQoaAZHQJ24KvhZQpFoB03oA2gIR0C0c/Mqe9SNdX2UKGgGR0CdyfCOmzjWaAdN6ANoCEdAtHqat7rs0HV9lChoBkdAoCdpvitJWmgHTegDaAhHQLR7TuPFNtZ1fZQoaAZHQKAo7WbPQfJoB03oA2gIR0C0e1klu3tsdX2UKGgGR0CfbYycCo0iaAdN6ANoCEdAtHwOyMUAUHV9lChoBkdAnnk74SHuZ2gHTegDaAhHQLSBbWw/xDt1fZQoaAZHQJ4zXc32mHhoB03oA2gIR0C0gl287IT5dX2UKGgGR0CfbJQFs54oaAdN6ANoCEdAtIJsb4rSVnV9lChoBkdAngWZW/8EV2gHTegDaAhHQLSDbrupjtp1fZQoaAZHQKB4GIi1RchoB03oA2gIR0C0ikvub7TEdX2UKGgGR0CgM0hO58SgaAdN6ANoCEdAtIsBMtbs4XV9lChoBkdAn4Kr+PzWgGgHTegDaAhHQLSLC//echF1fZQoaAZHQKBPvwAEMb5oB03oA2gIR0C0i8HHzYmLdX2UKGgGR0CZoYOG0u14aAdN6ANoCEdAtJEjX/YJ3XV9lChoBkdAnXlXjyWiUWgHTegDaAhHQLSR22exwAF1fZQoaAZHQJePCvs7dSFoB03oA2gIR0C0keqUNayKdX2UKGgGR0CbatjVhCtzaAdN6ANoCEdAtJLsjv/ipHV9lChoBkdAnpNKvV3EAGgHTegDaAhHQLSaC+Pikwh1fZQoaAZHQJw6PiADq4ZoB03oA2gIR0C0mr5y6tkndX2UKGgGR0Cd8zb8FY+0aAdN6ANoCEdAtJrI4Otnw3V9lChoBkdAnTFn/YJ3PmgHTegDaAhHQLSbeXZoPCl1fZQoaAZHQJ1txAbADaJoB03oA2gIR0C0oMOIRAbAdX2UKGgGR0CeMbAEMb3oaAdN6ANoCEdAtKFzIzWPLnV9lChoBkdAnzoGNedCmmgHTegDaAhHQLShfVENOM51fZQoaAZHQJ2iHJp35etoB03oA2gIR0C0olTuSfUXdX2UKGgGR0CfjpMs6JZXaAdN6ANoCEdAtKm0wQDmsHV9lChoBkdAnPrFfu1F6WgHTegDaAhHQLSqZ/7BO591fZQoaAZHQJ7tyQyRB/toB03oA2gIR0C0qnKzNUwSdX2UKGgGR0Cev2aUiY9gaAdN6ANoCEdAtKsj863iJnV9lChoBkdAnKuL7Gecx2gHTegDaAhHQLSwaY+jdpJ1fZQoaAZHQJ48WJ66aspoB03oA2gIR0C0sR1XzUZvdX2UKGgGR0CdBcGdI5HVaAdN6ANoCEdAtLEoDGLk0nV9lChoBkdAoCHICKaXr2gHTegDaAhHQLSx1xYJVsF1fZQoaAZHQJ7eSpAD7qJoB03oA2gIR0C0uWmyPdVOdX2UKGgGR0Cd1Q5VfeDWaAdN6ANoCEdAtLofXHzYmXV9lChoBkdAn2NTUiILxGgHTegDaAhHQLS6KdKujh11fZQoaAZHQJ1yOM98qnZoB03oA2gIR0C0utwDmr80dX2UKGgGR0CarxfYBeXzaAdN6ANoCEdAtMA4w9JSSHV9lChoBkdAnY0LW3BpH2gHTegDaAhHQLTA6IX0oSd1fZQoaAZHQJzGjlZHNHJoB03oA2gIR0C0wPKHbh3rdX2UKGgGR0CeGEVVPva2aAdN6ANoCEdAtMGjzFuNxXV9lChoBkdAoApqrNnoPmgHTegDaAhHQLTJCwQUYbd1fZQoaAZHQKAlf6VMVUNoB03oA2gIR0C0ycMF2V3VdX2UKGgGR0CgLDG9pRGdaAdN6ANoCEdAtMnNlOGj9HV9lChoBkdAnVQr/jsD4mgHTegDaAhHQLTKgMlkYoB1fZQoaAZHQJ5PGylenhtoB03oA2gIR0C0z8IxpL26dX2UKGgGR0CcAHnq3VkMaAdN6ANoCEdAtNBvneSB9XV9lChoBkdAn6Ylg6U7jmgHTegDaAhHQLTQehYNiH91fZQoaAZHQKBnm8SPEKpoB03oA2gIR0C00Shkqc3EdX2UKGgGR0CeH+0e2d/baAdN6ANoCEdAtNhzhFVktnV9lChoBkdAnu2GdupCKWgHTegDaAhHQLTZLPE87p51fZQoaAZHQJ0PNwVCXyBoB03oA2gIR0C02TchHLA6dX2UKGgGR0CdAlV9nbqRaAdN6ANoCEdAtNnkpx3mm3VlLg=="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}