|
from typing import Dict, List, Any |
|
from transformers import AutoModel, AutoTokenizer |
|
|
|
|
|
class EndpointHandler: |
|
def __init__(self, path="."): |
|
self.tokenizer = AutoTokenizer.from_pretrained(path) |
|
self.model = AutoModel.from_pretrained( |
|
path, |
|
trust_remote_code=True, |
|
|
|
) |
|
self.model.eval() |
|
|
|
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]: |
|
""" |
|
data args: |
|
inputs (:obj: `str` | `PIL.Image` | `np.array`) |
|
kwargs |
|
Return: |
|
A :obj:`list` | `dict`: will be serialized and returned |
|
""" |
|
|
|
outputs = self.model.predict(data['inputs'], self.tokenizer, output_style='json') |
|
for i, output in enumerate(outputs): |
|
lem = ' '.join([x['lex'] for x in output['tokens']]) |
|
ner = [ |
|
{ |
|
'word': ' '.join([x['lex'] for x in output['tokens'][x['token_start']:x['token_end'] + 1]]), |
|
'entity_group': x['label'], |
|
'token_start': x['token_start'], |
|
'token_end': x['token_end'] |
|
} |
|
for x in output['ner_entities'] |
|
] |
|
outputs[i] = { |
|
'lex': lem, |
|
'ner': ner |
|
} |
|
return outputs |
|
|