from typing import Dict, List, Any from transformers import AutoModel, AutoTokenizer class EndpointHandler: def __init__(self, path="."): self.tokenizer = AutoTokenizer.from_pretrained(path) self.model = AutoModel.from_pretrained( path, trust_remote_code=True, do_syntax=True, do_prefix=False, do_morph=False, do_ner=True, do_lex=True ) self.model.eval() def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]: """ data args: inputs (:obj: `str` | `PIL.Image` | `np.array`) kwargs Return: A :obj:`list` | `dict`: will be serialized and returned """ # return self.pipeline(data['inputs']) outputs = self.model.predict(data['inputs'], self.tokenizer, output_style='json') for i, output in enumerate(outputs): lem = ' '.join([x['lex'] for x in output['tokens']]) ner = [ { 'word': ' '.join([x['lex'] for x in output['tokens'][x['token_start']:x['token_end'] + 1]]), 'entity_group': x['label'], 'token_start': x['token_start'], 'token_end': x['token_end'] } for x in output['ner_entities'] ] outputs[i] = { 'lex': lem, 'ner': ner } return outputs