--- license: mit base_model: openai-community/gpt2-large tags: - trl - reward-trainer - generated_from_trainer metrics: - accuracy model-index: - name: RM-HH-AllMixNonPeft_harmless_gpt3_20000_gpt2-large_shuffleFalse_extractchosenFalse results: [] --- # RM-HH-AllMixNonPeft_harmless_gpt3_20000_gpt2-large_shuffleFalse_extractchosenFalse This model is a fine-tuned version of [openai-community/gpt2-large](https://huggingface.co/openai-community/gpt2-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0114 - Accuracy: 0.9958 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1.41e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.5568 | 0.17 | 250 | 0.0365 | 0.9808 | | 0.5117 | 0.34 | 500 | 0.0154 | 0.9935 | | 0.483 | 0.51 | 750 | 0.0184 | 0.995 | | 0.4771 | 0.68 | 1000 | 0.0139 | 0.9954 | | 0.469 | 0.85 | 1250 | 0.0114 | 0.9958 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.1.2 - Datasets 2.18.0 - Tokenizers 0.15.2