a2c-AntBulletEnv-v0 / config.json
Holmodi's picture
Initial commit
198c1f3
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x79e0c3712e60>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x79e0c3712ef0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x79e0c3712f80>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x79e0c3713010>", "_build": "<function ActorCriticPolicy._build at 0x79e0c37130a0>", "forward": "<function ActorCriticPolicy.forward at 0x79e0c3713130>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x79e0c37131c0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x79e0c3713250>", "_predict": "<function ActorCriticPolicy._predict at 0x79e0c37132e0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x79e0c3713370>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x79e0c3713400>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x79e0c3713490>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x79e0c3703f00>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1691031680444417782, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAB93Lz+lVq69GpQMP4YE675QXxZAQl2iPsIvbT0xlL+/KfGNPqvvUL/S4Kq/P2JxP7qfiD/HuFe/XWSXP7C8br3cMqY/bfCFP8NbWj4vlu2/tdrDv/k/pz53IfA/ssSNv1WXbr8a4gLAfTYTwIHomb8QceG/OQ4HP9vVjD7667u/QBXkvkYVKT0Vawo+CQGIPkOliD9qVWe7aYynv19aVbyoS5q/A1a5vMH+1j5ZJPk8mbJyvzV4y7xQ7EM/thv+PKNImD+8bIK86CDFvrnpY7xVl26/UFz6PtqW3j7251Q/jcMVv+jz1r4Y5xM/jTWpPydwZz+zPPi8GJesPC0urj55xog/xvJYvLFMDb54fbK+jtjFv0u/RT9gQcK9He1AvpHdAT9NCVG/YOM6PpvhzT8loNU+eqIBwDqDwL1+vgdAVZduv1Bc+j7alt4+geiZv+MVJj/JcTE/He0UPmfnDkD1G3s/yhM6P8FK4D7/k5O/uHWAP2WzVr+vlsA/IJaPv2LvPD7yVZg/AWmiPtbt7D9w4cM9o82ePD65Qj9KRu87v6ecv4gIc8DkjgBAS3MVvVWXbr9QXPo+2pbePvbnVD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADd8z01AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA3LTSvQAAAAB69N+/AAAAANxkjr0AAAAAzDbxPwAAAABQpAi8AAAAAC4w5T8AAAAA3QyhOAAAAAAkkva/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUHC5tAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgMevDj4AAAAA4pL8vwAAAACjvDY9AAAAACan4z8AAAAAiEhxPQAAAACw+N8/AAAAAJO2d7wAAAAAuob9vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALkdz7UAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBLhIk9AAAAAM5E478AAAAAKyTTvQAAAAAdK/c/AAAAAMLpXT0AAAAAjC35PwAAAAAsYz29AAAAALJD5L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZG6Q2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAD4rhOwAAAADJae+/AAAAACCv3j0AAAAAcbDZPwAAAADamby8AAAAALgE6D8AAAAAPmcHvgAAAADnofC/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQITAji4rjHaMAWyUTegDjAF0lEdAqW//c8DB/XV9lChoBkdAiWo2Kl54W2gHTegDaAhHQKlxwWuX/o91fZQoaAZHQHsNcMuvlltoB03oA2gIR0CpdSechC+ldX2UKGgGR0CTdhHYYixFaAdN6ANoCEdAqXaCXyAhCHV9lChoBkdAkbivr4WUKWgHTegDaAhHQKl8XKyv9tN1fZQoaAZHQJR+RpTMqz9oB03oA2gIR0CpfiNC7btadX2UKGgGR0CXQPe+Eh7maAdN6ANoCEdAqYGTmyPdVXV9lChoBkdAkV7ZyU9py2gHTegDaAhHQKmDdcqOLix1fZQoaAZHQJODkSElE7ZoB03oA2gIR0CpitwKa5PNdX2UKGgGR0CV1nrdFfAsaAdN6ANoCEdAqYyb3yqdYnV9lChoBkdAkb0AMx46fmgHTegDaAhHQKmQD1HOKO11fZQoaAZHQJGAm1YyO7xoB03oA2gIR0CpkXuTq0MPdX2UKGgGR0CM7HXjENvwaAdN6ANoCEdAqZeAduHerXV9lChoBkdAkkbySvC/GmgHTegDaAhHQKmZQrFOwgV1fZQoaAZHQGwr1nVXmvJoB03oA2gIR0CpnP9q+JxedX2UKGgGR0CMJySJ0nw5aAdN6ANoCEdAqZ7WMn7YTXV9lChoBkdAlBdnaN+9amgHTegDaAhHQKml9XJYDDF1fZQoaAZHQJa2ecVgx8FoB03oA2gIR0Cpp7ZfdAPedX2UKGgGR0CT5YeQdS2qaAdN6ANoCEdAqasSSTyJ9HV9lChoBkdAk5WOpfhMrWgHTegDaAhHQKmsWWi1y/91fZQoaAZHQGhojwQUYbdoB03oA2gIR0CpsjbdJrckdX2UKGgGR0CT23hgmZ3LaAdN6ANoCEdAqbP2RmseXHV9lChoBkdAlQ8vIsAeaWgHTegDaAhHQKm3oj9n9Nx1fZQoaAZHQJamIgHNX5poB03oA2gIR0CpuXjJdSl4dX2UKGgGR0CVfjn6Eal2aAdN6ANoCEdAqcCZGe+VT3V9lChoBkdAk9PBX4j8k2gHTegDaAhHQKnCV6Tnq3V1fZQoaAZHQJjZvR8c+7loB03oA2gIR0CpxbcWbgCPdX2UKGgGR0CXDyX7Lt/naAdN6ANoCEdAqcb93pwCKnV9lChoBkdAlwHAcLjPwGgHTegDaAhHQKnM0FXaJyh1fZQoaAZHQJcPpKL876poB03oA2gIR0CpzpYU34sVdX2UKGgGR0CWf+kn1FpgaAdN6ANoCEdAqdJBgy/KyXV9lChoBkdAmB2gPy08eWgHTegDaAhHQKnUHr56+nJ1fZQoaAZHQIuKPgtOEdxoB03oA2gIR0Cp22BI4EOidX2UKGgGR0CMl/AsTWXkaAdN6ANoCEdAqd0ToIOYpnV9lChoBkdAhHQvhZQpF2gHTegDaAhHQKngbgx8D0V1fZQoaAZHQJEaMku6ErZoB03oA2gIR0Cp4a8kMTewdX2UKGgGR0CYAMFWn0kGaAdN6ANoCEdAqedpS9/SY3V9lChoBkdAmTwRt+CsfmgHTegDaAhHQKnpJPldTpB1fZQoaAZHQJTgVzvJA+poB03oA2gIR0Cp7LqaG5+ZdX2UKGgGR0CV36V2icoZaAdN6ANoCEdAqe6s25xzaXV9lChoBkdAlyw+y3Td+GgHTegDaAhHQKn2Dl5nlGR1fZQoaAZHQJdO6Dg62fFoB03oA2gIR0Cp99dbPhQ4dX2UKGgGR0CWcbFg2IfsaAdN6ANoCEdAqftALqlgt3V9lChoBkdAk4UDAJswc2gHTegDaAhHQKn8i7g88tB1fZQoaAZHQJbjwK3NLUVoB03oA2gIR0CqAnKOktVadX2UKGgGR0CYu9NXHR1HaAdN6ANoCEdAqgRNke6qbXV9lChoBkdAmINf5k9U0mgHTegDaAhHQKoIECg9Net1fZQoaAZHQJcCo/pt78hoB03oA2gIR0CqCfRREWqMdX2UKGgGR0CUpHoxYaHcaAdN6ANoCEdAqhE9M9KVZHV9lChoBkdAmLMFafSQYGgHTegDaAhHQKoS+1hLGrF1fZQoaAZHQJT0jVkMCtBoB03oA2gIR0CqFlXRPXTWdX2UKGgGR0CWBc/GlyimaAdN6ANoCEdAqhecal1r7HV9lChoBkdAk6gUaqCHymgHTegDaAhHQKodYuOjqOd1fZQoaAZHQJPIQQg9vCNoB03oA2gIR0CqHx8/+sHTdX2UKGgGR0CZacgOBlMAaAdN6ANoCEdAqiKhx//ecnV9lChoBkdAm+XZ9JBgNWgHTegDaAhHQKokfW3BpHt1fZQoaAZHQJpXWCUX531oB03oA2gIR0CqK8jRMN+cdX2UKGgGR0CZVif1HvtuaAdN6ANoCEdAqi2JvFWGRHV9lChoBkdAlgMULpiZv2gHTegDaAhHQKow6XbdrO91fZQoaAZHQJmJ9rwe/6BoB03oA2gIR0CqMjXQMQVcdX2UKGgGR0CSHfLa24NJaAdN6ANoCEdAqjgP6KtPpXV9lChoBkdAlDkHlr/KhmgHTegDaAhHQKo5ztqHoHN1fZQoaAZHQJLLcSFoL5RoB03oA2gIR0CqPWCvovBadX2UKGgGR0CVnr1pj+aSaAdN6ANoCEdAqj9CyyD7InV9lChoBkdAkwesAaNuL2gHTegDaAhHQKpGipAlfJF1fZQoaAZHQJKH+vxH5JtoB03oA2gIR0CqSFuObRWtdX2UKGgGR0CU8X8E3bVSaAdN6ANoCEdAqku8ewLVnXV9lChoBkdAiw+uSwGGEmgHTegDaAhHQKpNB17IDHR1fZQoaAZHQJMu/gvUSZloB03oA2gIR0CqUtL/82rGdX2UKGgGR0CQ/ifms/6gaAdN6ANoCEdAqlSS3b212XV9lChoBkdAi3H2criEQGgHTegDaAhHQKpYL79AHFB1fZQoaAZHQJWr6cy31BdoB03oA2gIR0CqWhM1jy4GdX2UKGgGR0CXDHsXBP9DaAdN6ANoCEdAqmFSvTw2EXV9lChoBkdAlc7hnOB192gHTegDaAhHQKpjDG6PKdR1fZQoaAZHQJRbNFG5MDhoB03oA2gIR0CqZnnSnccmdX2UKGgGR0CYL+wnH/96aAdN6ANoCEdAqmfFafSQYHV9lChoBkdAmKQovWYnfGgHTegDaAhHQKptl3ta6jF1fZQoaAZHQJhJKahHskZoB03oA2gIR0Cqb1e5e7cxdX2UKGgGR0CYlpwKSgXeaAdN6ANoCEdAqnLq5VfeDXV9lChoBkdAl+FKUJOWSmgHTegDaAhHQKp0yGnn+yZ1fZQoaAZHQJR6c1R+BpZoB03oA2gIR0Cqfu90Rvm6dX2UKGgGR0CZhT1M/QjVaAdN6ANoCEdAqoCqe5Fw1nV9lChoBkdAmh/SDEm6XmgHTegDaAhHQKqEB6AvtdB1fZQoaAZHQJjhjC1qnFZoB03oA2gIR0CqhWU9ZA6ddX2UKGgGR0CcQXqp97WvaAdN6ANoCEdAqos2IRAbAHV9lChoBkdAmW0wfQrtmmgHTegDaAhHQKqM9toi9qV1fZQoaAZHQJkAY7OmixpoB03oA2gIR0CqkRuoHcDbdX2UKGgGR0CR2Hliz9jxaAdN6ANoCEdAqpL16Z6Uq3V9lChoBkdAlqXPMGHHm2gHTegDaAhHQKqZp79hqj91fZQoaAZHQJMQVXLeQ+5oB03oA2gIR0Cqm1gmJFb3dX2UKGgGR0CVjqH58BuGaAdN6ANoCEdAqp6zqW1MNHV9lChoBkdAlwPbm6oVEmgHTegDaAhHQKqf+Gj9GZx1fZQoaAZHQJNxgswtapxoB03oA2gIR0Cqpbdxp+MIdX2UKGgGR0CUfCpEQXhwaAdN6ANoCEdAqqd0qWkadnV9lChoBkdAlpyLadtl7WgHTegDaAhHQKqrmPDpC8h1fZQoaAZHQI+uq9Gqgh9oB03oA2gIR0CqrX/oq0+ldX2UKGgGR0CVusRtgrpaaAdN6ANoCEdAqrQluxbB43V9lChoBkdAk9RGZqmCRWgHTegDaAhHQKq146o2n891fZQoaAZHQJIm2fAbhm5oB03oA2gIR0CquVUyP+4tdX2UKGgGR0CZ4M6jnFHbaAdN6ANoCEdAqrqkunMt9XVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}