HorcruxNo13
commited on
Commit
•
60892ff
1
Parent(s):
ad716c8
Model save
Browse files- README.md +40 -25
- pytorch_model.bin +1 -1
README.md
CHANGED
@@ -23,13 +23,13 @@ model-index:
|
|
23 |
metrics:
|
24 |
- name: Accuracy
|
25 |
type: accuracy
|
26 |
-
value: 0.
|
27 |
- name: Precision
|
28 |
type: precision
|
29 |
-
value: 0.
|
30 |
- name: Recall
|
31 |
type: recall
|
32 |
-
value: 0.
|
33 |
---
|
34 |
|
35 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -39,11 +39,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
39 |
|
40 |
This model is a fine-tuned version of [MBZUAI/swiftformer-xs](https://huggingface.co/MBZUAI/swiftformer-xs) on the imagefolder dataset.
|
41 |
It achieves the following results on the evaluation set:
|
42 |
-
- Loss: 0.
|
43 |
-
- Accuracy: 0.
|
44 |
-
- Precision: 0.
|
45 |
-
- Recall: 0.
|
46 |
-
- F1 Score: 0.
|
47 |
|
48 |
## Model description
|
49 |
|
@@ -71,32 +71,47 @@ The following hyperparameters were used during training:
|
|
71 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
72 |
- lr_scheduler_type: linear
|
73 |
- lr_scheduler_warmup_ratio: 0.1
|
74 |
-
- num_epochs:
|
75 |
|
76 |
### Training results
|
77 |
|
78 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 Score |
|
79 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:--------:|
|
80 |
-
| No log | 1.0 | 4 | 0.
|
81 |
-
| No log | 2.0 | 8 | 0.
|
82 |
-
| No log | 3.0 | 12 | 0.
|
83 |
-
|
|
84 |
-
|
|
85 |
-
|
|
86 |
-
|
|
87 |
-
| 0.
|
88 |
-
| 0.
|
89 |
-
| 0.
|
90 |
-
| 0.
|
91 |
-
| 0.
|
92 |
-
| 0.
|
93 |
-
| 0.
|
94 |
-
| 0.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
|
96 |
|
97 |
### Framework versions
|
98 |
|
99 |
-
- Transformers 4.33.
|
100 |
- Pytorch 2.0.1+cu118
|
101 |
- Datasets 2.14.5
|
102 |
- Tokenizers 0.13.3
|
|
|
23 |
metrics:
|
24 |
- name: Accuracy
|
25 |
type: accuracy
|
26 |
+
value: 0.57
|
27 |
- name: Precision
|
28 |
type: precision
|
29 |
+
value: 0.59945
|
30 |
- name: Recall
|
31 |
type: recall
|
32 |
+
value: 0.57
|
33 |
---
|
34 |
|
35 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
39 |
|
40 |
This model is a fine-tuned version of [MBZUAI/swiftformer-xs](https://huggingface.co/MBZUAI/swiftformer-xs) on the imagefolder dataset.
|
41 |
It achieves the following results on the evaluation set:
|
42 |
+
- Loss: 0.6833
|
43 |
+
- Accuracy: 0.57
|
44 |
+
- Precision: 0.5995
|
45 |
+
- Recall: 0.57
|
46 |
+
- F1 Score: 0.5828
|
47 |
|
48 |
## Model description
|
49 |
|
|
|
71 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
72 |
- lr_scheduler_type: linear
|
73 |
- lr_scheduler_warmup_ratio: 0.1
|
74 |
+
- num_epochs: 30
|
75 |
|
76 |
### Training results
|
77 |
|
78 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 Score |
|
79 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:--------:|
|
80 |
+
| No log | 1.0 | 4 | 0.6713 | 0.6292 | 0.6454 | 0.6292 | 0.6365 |
|
81 |
+
| No log | 2.0 | 8 | 0.7142 | 0.475 | 0.6155 | 0.475 | 0.5020 |
|
82 |
+
| No log | 3.0 | 12 | 0.7298 | 0.425 | 0.6026 | 0.425 | 0.4435 |
|
83 |
+
| No log | 4.0 | 16 | 0.7389 | 0.4792 | 0.6408 | 0.4792 | 0.5023 |
|
84 |
+
| No log | 5.0 | 20 | 0.7427 | 0.4792 | 0.6408 | 0.4792 | 0.5023 |
|
85 |
+
| No log | 6.0 | 24 | 0.7235 | 0.5083 | 0.6424 | 0.5083 | 0.5348 |
|
86 |
+
| No log | 7.0 | 28 | 0.6893 | 0.5875 | 0.6687 | 0.5875 | 0.6107 |
|
87 |
+
| 0.6981 | 8.0 | 32 | 0.6816 | 0.6042 | 0.6847 | 0.6042 | 0.6264 |
|
88 |
+
| 0.6981 | 9.0 | 36 | 0.6866 | 0.6042 | 0.6888 | 0.6042 | 0.6266 |
|
89 |
+
| 0.6981 | 10.0 | 40 | 0.7005 | 0.575 | 0.6751 | 0.575 | 0.5996 |
|
90 |
+
| 0.6981 | 11.0 | 44 | 0.7127 | 0.525 | 0.6554 | 0.525 | 0.5510 |
|
91 |
+
| 0.6981 | 12.0 | 48 | 0.7098 | 0.5333 | 0.6595 | 0.5333 | 0.5593 |
|
92 |
+
| 0.6981 | 13.0 | 52 | 0.7126 | 0.5208 | 0.6579 | 0.5208 | 0.5463 |
|
93 |
+
| 0.6981 | 14.0 | 56 | 0.7114 | 0.5292 | 0.6575 | 0.5292 | 0.5551 |
|
94 |
+
| 0.6656 | 15.0 | 60 | 0.6908 | 0.5667 | 0.6712 | 0.5667 | 0.5917 |
|
95 |
+
| 0.6656 | 16.0 | 64 | 0.6804 | 0.5833 | 0.6749 | 0.5833 | 0.6073 |
|
96 |
+
| 0.6656 | 17.0 | 68 | 0.6806 | 0.5958 | 0.6808 | 0.5958 | 0.6188 |
|
97 |
+
| 0.6656 | 18.0 | 72 | 0.6884 | 0.5583 | 0.6629 | 0.5583 | 0.5838 |
|
98 |
+
| 0.6656 | 19.0 | 76 | 0.6821 | 0.5708 | 0.6647 | 0.5708 | 0.5955 |
|
99 |
+
| 0.6656 | 20.0 | 80 | 0.6663 | 0.6042 | 0.6806 | 0.6042 | 0.6261 |
|
100 |
+
| 0.6656 | 21.0 | 84 | 0.6717 | 0.6 | 0.6787 | 0.6 | 0.6223 |
|
101 |
+
| 0.6656 | 22.0 | 88 | 0.6682 | 0.6083 | 0.6826 | 0.6083 | 0.6299 |
|
102 |
+
| 0.6443 | 23.0 | 92 | 0.6683 | 0.6167 | 0.6946 | 0.6167 | 0.6381 |
|
103 |
+
| 0.6443 | 24.0 | 96 | 0.6733 | 0.6 | 0.6911 | 0.6 | 0.6230 |
|
104 |
+
| 0.6443 | 25.0 | 100 | 0.6647 | 0.6083 | 0.6866 | 0.6083 | 0.6302 |
|
105 |
+
| 0.6443 | 26.0 | 104 | 0.6729 | 0.6083 | 0.6907 | 0.6083 | 0.6305 |
|
106 |
+
| 0.6443 | 27.0 | 108 | 0.6740 | 0.6042 | 0.6930 | 0.6042 | 0.6268 |
|
107 |
+
| 0.6443 | 28.0 | 112 | 0.6809 | 0.5917 | 0.6916 | 0.5917 | 0.6153 |
|
108 |
+
| 0.6443 | 29.0 | 116 | 0.6778 | 0.6042 | 0.7017 | 0.6042 | 0.6270 |
|
109 |
+
| 0.6313 | 30.0 | 120 | 0.6794 | 0.5958 | 0.6935 | 0.5958 | 0.6192 |
|
110 |
|
111 |
|
112 |
### Framework versions
|
113 |
|
114 |
+
- Transformers 4.33.3
|
115 |
- Pytorch 2.0.1+cu118
|
116 |
- Datasets 2.14.5
|
117 |
- Tokenizers 0.13.3
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 12267645
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8e66370310393ce3eb4e5e90590400bf671d62a3c614b0f57123c203845e9d3e
|
3 |
size 12267645
|