HueyNemud commited on
Commit
e8c1d1c
1 Parent(s): 2367ee0

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +91 -0
README.md ADDED
@@ -0,0 +1,91 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - generated_from_trainer
4
+ model-index:
5
+ - name: icdar23-entrydetector_labelledtext_breaks_indents_left_diff_right_ref
6
+ results: []
7
+ ---
8
+
9
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
10
+ should probably proofread and complete it, then remove this comment. -->
11
+
12
+ # icdar23-entrydetector_labelledtext_breaks_indents_left_diff_right_ref
13
+
14
+ This model is a fine-tuned version of [HueyNemud/das22-10-camembert_pretrained](https://huggingface.co/HueyNemud/das22-10-camembert_pretrained) on the None dataset.
15
+ It achieves the following results on the evaluation set:
16
+ - Loss: 0.2515
17
+ - Act: {'precision': 0.8046783625730994, 'recall': 0.9017038007863696, 'f1': 0.8504326328800988, 'number': 1526}
18
+ - Cardinal: {'precision': 0.9451428571428572, 'recall': 0.9538638985005767, 'f1': 0.9494833524684271, 'number': 2601}
19
+ - Ebegin: {'precision': 0.9940431868950111, 'recall': 0.9910913140311804, 'f1': 0.9925650557620818, 'number': 2694}
20
+ - Eend: {'precision': 0.9988751406074241, 'recall': 0.9859363434492968, 'f1': 0.9923635686347551, 'number': 2702}
21
+ - Ft: {'precision': 0.2, 'recall': 0.2857142857142857, 'f1': 0.23529411764705882, 'number': 21}
22
+ - Loc: {'precision': 0.9071332436069987, 'recall': 0.935072142064373, 'f1': 0.9208908320808854, 'number': 3604}
23
+ - Per: {'precision': 0.9300651354130957, 'recall': 0.9345504650361695, 'f1': 0.9323024054982818, 'number': 2903}
24
+ - Titre: {'precision': 0.5234042553191489, 'recall': 0.82, 'f1': 0.6389610389610388, 'number': 150}
25
+ - Overall Precision: 0.9287
26
+ - Overall Recall: 0.9507
27
+ - Overall F1: 0.9396
28
+ - Overall Accuracy: 0.9459
29
+
30
+ ## Model description
31
+
32
+ More information needed
33
+
34
+ ## Intended uses & limitations
35
+
36
+ More information needed
37
+
38
+ ## Training and evaluation data
39
+
40
+ More information needed
41
+
42
+ ## Training procedure
43
+
44
+ ### Training hyperparameters
45
+
46
+ The following hyperparameters were used during training:
47
+ - learning_rate: 0.0001
48
+ - train_batch_size: 2
49
+ - eval_batch_size: 2
50
+ - seed: 42
51
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
52
+ - lr_scheduler_type: linear
53
+ - training_steps: 7500
54
+
55
+ ### Training results
56
+
57
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
58
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
59
+ | No log | 0.07 | 300 | 0.2219 | 0.8682 | 0.9280 | 0.8971 | 0.9525 |
60
+ | 0.4302 | 0.14 | 600 | 0.1580 | 0.9429 | 0.9488 | 0.9458 | 0.9658 |
61
+ | 0.4302 | 0.21 | 900 | 0.1575 | 0.9398 | 0.9429 | 0.9413 | 0.9597 |
62
+ | 0.1819 | 0.29 | 1200 | 0.1236 | 0.9447 | 0.9542 | 0.9495 | 0.9686 |
63
+ | 0.1537 | 0.36 | 1500 | 0.1312 | 0.9543 | 0.9486 | 0.9514 | 0.9670 |
64
+ | 0.1537 | 0.43 | 1800 | 0.1337 | 0.9487 | 0.9559 | 0.9523 | 0.9679 |
65
+ | 0.119 | 0.5 | 2100 | 0.1198 | 0.9554 | 0.9556 | 0.9555 | 0.9702 |
66
+ | 0.119 | 0.57 | 2400 | 0.1128 | 0.9467 | 0.9641 | 0.9553 | 0.9707 |
67
+ | 0.1098 | 0.64 | 2700 | 0.1215 | 0.9528 | 0.9607 | 0.9567 | 0.9713 |
68
+ | 0.1118 | 0.72 | 3000 | 0.1099 | 0.9482 | 0.9635 | 0.9558 | 0.9711 |
69
+ | 0.1118 | 0.79 | 3300 | 0.1140 | 0.9541 | 0.9684 | 0.9612 | 0.9727 |
70
+ | 0.094 | 0.86 | 3600 | 0.0969 | 0.9581 | 0.9654 | 0.9617 | 0.9748 |
71
+ | 0.094 | 0.93 | 3900 | 0.1089 | 0.9564 | 0.9664 | 0.9614 | 0.9755 |
72
+ | 0.0895 | 1.0 | 4200 | 0.1158 | 0.9574 | 0.9662 | 0.9618 | 0.9746 |
73
+ | 0.0626 | 1.07 | 4500 | 0.1072 | 0.9479 | 0.9709 | 0.9593 | 0.9747 |
74
+ | 0.0626 | 1.14 | 4800 | 0.1060 | 0.9549 | 0.9682 | 0.9615 | 0.9735 |
75
+ | 0.0474 | 1.22 | 5100 | 0.1172 | 0.9462 | 0.9718 | 0.9588 | 0.9723 |
76
+ | 0.0474 | 1.29 | 5400 | 0.1019 | 0.9550 | 0.9698 | 0.9624 | 0.9764 |
77
+ | 0.0554 | 1.36 | 5700 | 0.1086 | 0.9473 | 0.9700 | 0.9585 | 0.9737 |
78
+ | 0.0416 | 1.43 | 6000 | 0.1175 | 0.9514 | 0.9714 | 0.9613 | 0.9737 |
79
+ | 0.0416 | 1.5 | 6300 | 0.1143 | 0.9536 | 0.9718 | 0.9626 | 0.9742 |
80
+ | 0.0514 | 1.57 | 6600 | 0.1113 | 0.9618 | 0.9679 | 0.9648 | 0.9749 |
81
+ | 0.0514 | 1.65 | 6900 | 0.1084 | 0.9595 | 0.9709 | 0.9652 | 0.9762 |
82
+ | 0.0377 | 1.72 | 7200 | 0.1102 | 0.9601 | 0.9706 | 0.9653 | 0.9759 |
83
+ | 0.0437 | 1.79 | 7500 | 0.1123 | 0.9585 | 0.9710 | 0.9647 | 0.9757 |
84
+
85
+
86
+ ### Framework versions
87
+
88
+ - Transformers 4.26.1
89
+ - Pytorch 1.13.1+cu116
90
+ - Datasets 2.9.0
91
+ - Tokenizers 0.13.2