update model card README.md
Browse files
README.md
CHANGED
@@ -13,13 +13,13 @@ should probably proofread and complete it, then remove this comment. -->
|
|
13 |
|
14 |
This model is a fine-tuned version of [HueyNemud/das22-10-camembert_pretrained](https://huggingface.co/HueyNemud/das22-10-camembert_pretrained) on the None dataset.
|
15 |
It achieves the following results on the evaluation set:
|
16 |
-
- Loss: 0.
|
17 |
-
- Ebegin: {'precision': 0.
|
18 |
-
- Eend: {'precision': 0.
|
19 |
-
- Overall Precision: 0.
|
20 |
-
- Overall Recall: 0.
|
21 |
-
- Overall F1: 0.
|
22 |
-
- Overall Accuracy: 0.
|
23 |
|
24 |
## Model description
|
25 |
|
@@ -44,24 +44,29 @@ The following hyperparameters were used during training:
|
|
44 |
- seed: 42
|
45 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
46 |
- lr_scheduler_type: linear
|
47 |
-
- training_steps:
|
48 |
|
49 |
### Training results
|
50 |
|
51 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
52 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
53 |
-
| No log | 0.07 | 300 | 0.
|
54 |
-
| 0.
|
55 |
-
| 0.
|
56 |
-
| 0.
|
57 |
-
| 0.
|
58 |
-
| 0.
|
59 |
-
| 0.
|
|
|
|
|
|
|
|
|
|
|
60 |
|
61 |
|
62 |
### Framework versions
|
63 |
|
64 |
-
- Transformers 4.26.
|
65 |
- Pytorch 1.13.1+cu116
|
66 |
- Datasets 2.9.0
|
67 |
- Tokenizers 0.13.2
|
|
|
13 |
|
14 |
This model is a fine-tuned version of [HueyNemud/das22-10-camembert_pretrained](https://huggingface.co/HueyNemud/das22-10-camembert_pretrained) on the None dataset.
|
15 |
It achieves the following results on the evaluation set:
|
16 |
+
- Loss: 0.0319
|
17 |
+
- Ebegin: {'precision': 0.9928057553956835, 'recall': 0.9341857841293719, 'f1': 0.9626041464832397, 'number': 2659}
|
18 |
+
- Eend: {'precision': 0.9772727272727273, 'recall': 0.9641255605381166, 'f1': 0.9706546275395034, 'number': 2676}
|
19 |
+
- Overall Precision: 0.9848
|
20 |
+
- Overall Recall: 0.9492
|
21 |
+
- Overall F1: 0.9667
|
22 |
+
- Overall Accuracy: 0.9936
|
23 |
|
24 |
## Model description
|
25 |
|
|
|
44 |
- seed: 42
|
45 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
46 |
- lr_scheduler_type: linear
|
47 |
+
- training_steps: 7500
|
48 |
|
49 |
### Training results
|
50 |
|
51 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
52 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
53 |
+
| No log | 0.07 | 300 | 0.0422 | 0.9698 | 0.9675 | 0.9686 | 0.9945 |
|
54 |
+
| 0.2178 | 0.14 | 600 | 0.0249 | 0.9900 | 0.9637 | 0.9767 | 0.9952 |
|
55 |
+
| 0.2178 | 0.21 | 900 | 0.0236 | 0.9859 | 0.9721 | 0.9790 | 0.9957 |
|
56 |
+
| 0.0267 | 0.29 | 1200 | 0.0187 | 0.9908 | 0.9711 | 0.9808 | 0.9961 |
|
57 |
+
| 0.0209 | 0.36 | 1500 | 0.0191 | 0.9869 | 0.9727 | 0.9798 | 0.9959 |
|
58 |
+
| 0.0209 | 0.43 | 1800 | 0.0199 | 0.9886 | 0.9712 | 0.9798 | 0.9959 |
|
59 |
+
| 0.0167 | 0.5 | 2100 | 0.0178 | 0.9912 | 0.9715 | 0.9813 | 0.9962 |
|
60 |
+
| 0.0167 | 0.57 | 2400 | 0.0176 | 0.9937 | 0.9595 | 0.9763 | 0.9952 |
|
61 |
+
| 0.0147 | 0.64 | 2700 | 0.0213 | 0.9869 | 0.9692 | 0.9779 | 0.9955 |
|
62 |
+
| 0.0142 | 0.72 | 3000 | 0.0181 | 0.9854 | 0.9767 | 0.9810 | 0.9962 |
|
63 |
+
| 0.0142 | 0.79 | 3300 | 0.0222 | 0.9865 | 0.9744 | 0.9804 | 0.9960 |
|
64 |
+
| 0.0121 | 0.86 | 3600 | 0.0190 | 0.9855 | 0.9770 | 0.9813 | 0.9962 |
|
65 |
|
66 |
|
67 |
### Framework versions
|
68 |
|
69 |
+
- Transformers 4.26.1
|
70 |
- Pytorch 1.13.1+cu116
|
71 |
- Datasets 2.9.0
|
72 |
- Tokenizers 0.13.2
|