update model card README.md
Browse files
README.md
CHANGED
@@ -13,13 +13,13 @@ should probably proofread and complete it, then remove this comment. -->
|
|
13 |
|
14 |
This model is a fine-tuned version of [HueyNemud/das22-10-camembert_pretrained](https://huggingface.co/HueyNemud/das22-10-camembert_pretrained) on the None dataset.
|
15 |
It achieves the following results on the evaluation set:
|
16 |
-
- Loss: 0.
|
17 |
-
- Ebegin: {'precision': 0.
|
18 |
-
- Eend: {'precision': 0.
|
19 |
-
- Overall Precision: 0.
|
20 |
-
- Overall Recall: 0.
|
21 |
-
- Overall F1: 0.
|
22 |
-
- Overall Accuracy: 0.
|
23 |
|
24 |
## Model description
|
25 |
|
@@ -50,31 +50,19 @@ The following hyperparameters were used during training:
|
|
50 |
|
51 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
52 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
53 |
-
| No log | 0.07 | 300 | 0.
|
54 |
-
| 0.
|
55 |
-
| 0.
|
56 |
-
| 0.
|
57 |
-
| 0.
|
58 |
-
| 0.
|
59 |
-
| 0.
|
60 |
-
| 0.
|
61 |
-
| 0.
|
62 |
-
| 0.
|
63 |
-
| 0.
|
64 |
-
| 0.
|
65 |
-
| 0.
|
66 |
-
| 0.0073 | 1.0 | 4200 | 0.0063 | 0.9936 | 0.9912 | 0.9924 | 0.9985 |
|
67 |
-
| 0.0041 | 1.07 | 4500 | 0.0063 | 0.9959 | 0.9902 | 0.9931 | 0.9987 |
|
68 |
-
| 0.0041 | 1.14 | 4800 | 0.0068 | 0.9948 | 0.9907 | 0.9928 | 0.9986 |
|
69 |
-
| 0.0048 | 1.22 | 5100 | 0.0074 | 0.9937 | 0.9905 | 0.9921 | 0.9985 |
|
70 |
-
| 0.0048 | 1.29 | 5400 | 0.0074 | 0.9912 | 0.9906 | 0.9909 | 0.9982 |
|
71 |
-
| 0.0043 | 1.36 | 5700 | 0.0070 | 0.9947 | 0.9907 | 0.9927 | 0.9986 |
|
72 |
-
| 0.0046 | 1.43 | 6000 | 0.0072 | 0.9948 | 0.9914 | 0.9931 | 0.9987 |
|
73 |
-
| 0.0046 | 1.5 | 6300 | 0.0080 | 0.9939 | 0.9915 | 0.9927 | 0.9986 |
|
74 |
-
| 0.0038 | 1.57 | 6600 | 0.0072 | 0.9939 | 0.9921 | 0.9930 | 0.9986 |
|
75 |
-
| 0.0038 | 1.65 | 6900 | 0.0061 | 0.9952 | 0.9916 | 0.9934 | 0.9987 |
|
76 |
-
| 0.0051 | 1.72 | 7200 | 0.0060 | 0.9959 | 0.9913 | 0.9936 | 0.9988 |
|
77 |
-
| 0.005 | 1.79 | 7500 | 0.0060 | 0.9959 | 0.9913 | 0.9936 | 0.9988 |
|
78 |
|
79 |
|
80 |
### Framework versions
|
|
|
13 |
|
14 |
This model is a fine-tuned version of [HueyNemud/das22-10-camembert_pretrained](https://huggingface.co/HueyNemud/das22-10-camembert_pretrained) on the None dataset.
|
15 |
It achieves the following results on the evaluation set:
|
16 |
+
- Loss: 0.0120
|
17 |
+
- Ebegin: {'precision': 0.9901997738409348, 'recall': 0.9879654005265137, 'f1': 0.9890813253012049, 'number': 2659}
|
18 |
+
- Eend: {'precision': 0.9916824196597354, 'recall': 0.9801943198804185, 'f1': 0.9859049050930276, 'number': 2676}
|
19 |
+
- Overall Precision: 0.9909
|
20 |
+
- Overall Recall: 0.9841
|
21 |
+
- Overall F1: 0.9875
|
22 |
+
- Overall Accuracy: 0.9977
|
23 |
|
24 |
## Model description
|
25 |
|
|
|
50 |
|
51 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
52 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
53 |
+
| No log | 0.07 | 300 | 0.0318 | 0.9847 | 0.9761 | 0.9803 | 0.9966 |
|
54 |
+
| 0.1683 | 0.14 | 600 | 0.0164 | 0.9878 | 0.9890 | 0.9884 | 0.9978 |
|
55 |
+
| 0.1683 | 0.21 | 900 | 0.0146 | 0.9900 | 0.9853 | 0.9876 | 0.9976 |
|
56 |
+
| 0.0203 | 0.29 | 1200 | 0.0112 | 0.9862 | 0.9902 | 0.9882 | 0.9978 |
|
57 |
+
| 0.0123 | 0.36 | 1500 | 0.0089 | 0.9943 | 0.9878 | 0.9910 | 0.9983 |
|
58 |
+
| 0.0123 | 0.43 | 1800 | 0.0139 | 0.9970 | 0.9814 | 0.9891 | 0.9979 |
|
59 |
+
| 0.0109 | 0.5 | 2100 | 0.0101 | 0.9937 | 0.9882 | 0.9909 | 0.9982 |
|
60 |
+
| 0.0109 | 0.57 | 2400 | 0.0087 | 0.9949 | 0.9896 | 0.9922 | 0.9985 |
|
61 |
+
| 0.0092 | 0.64 | 2700 | 0.0081 | 0.9849 | 0.9919 | 0.9884 | 0.9978 |
|
62 |
+
| 0.0084 | 0.72 | 3000 | 0.0087 | 0.9937 | 0.9867 | 0.9902 | 0.9981 |
|
63 |
+
| 0.0084 | 0.79 | 3300 | 0.0089 | 0.9915 | 0.9889 | 0.9902 | 0.9981 |
|
64 |
+
| 0.0069 | 0.86 | 3600 | 0.0092 | 0.9899 | 0.9901 | 0.9900 | 0.9981 |
|
65 |
+
| 0.0069 | 0.93 | 3900 | 0.0097 | 0.9845 | 0.9915 | 0.9880 | 0.9977 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
|
67 |
|
68 |
### Framework versions
|