update model card README.md
Browse files
README.md
CHANGED
@@ -13,13 +13,13 @@ should probably proofread and complete it, then remove this comment. -->
|
|
13 |
|
14 |
This model is a fine-tuned version of [HueyNemud/das22-10-camembert_pretrained](https://huggingface.co/HueyNemud/das22-10-camembert_pretrained) on the None dataset.
|
15 |
It achieves the following results on the evaluation set:
|
16 |
-
- Loss: 0.
|
17 |
-
- Ebegin: {'precision': 0.
|
18 |
-
- Eend: {'precision': 0.
|
19 |
-
- Overall Precision: 0.
|
20 |
-
- Overall Recall: 0.
|
21 |
-
- Overall F1: 0.
|
22 |
-
- Overall Accuracy: 0.
|
23 |
|
24 |
## Model description
|
25 |
|
@@ -44,24 +44,30 @@ The following hyperparameters were used during training:
|
|
44 |
- seed: 42
|
45 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
46 |
- lr_scheduler_type: linear
|
47 |
-
- training_steps:
|
48 |
|
49 |
### Training results
|
50 |
|
51 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
52 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
53 |
-
| No log | 0.07 | 300 | 0.
|
54 |
-
| 0.
|
55 |
-
| 0.
|
56 |
-
| 0.
|
57 |
-
| 0.
|
58 |
-
| 0.
|
59 |
-
| 0.
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
|
61 |
|
62 |
### Framework versions
|
63 |
|
64 |
-
- Transformers 4.26.
|
65 |
- Pytorch 1.13.1+cu116
|
66 |
- Datasets 2.9.0
|
67 |
- Tokenizers 0.13.2
|
|
|
13 |
|
14 |
This model is a fine-tuned version of [HueyNemud/das22-10-camembert_pretrained](https://huggingface.co/HueyNemud/das22-10-camembert_pretrained) on the None dataset.
|
15 |
It achieves the following results on the evaluation set:
|
16 |
+
- Loss: 0.0079
|
17 |
+
- Ebegin: {'precision': 0.9973414356247626, 'recall': 0.9875893192929672, 'f1': 0.9924414210128495, 'number': 2659}
|
18 |
+
- Eend: {'precision': 0.9980966882375333, 'recall': 0.9798206278026906, 'f1': 0.9888742221384123, 'number': 2676}
|
19 |
+
- Overall Precision: 0.9977
|
20 |
+
- Overall Recall: 0.9837
|
21 |
+
- Overall F1: 0.9907
|
22 |
+
- Overall Accuracy: 0.9984
|
23 |
|
24 |
## Model description
|
25 |
|
|
|
44 |
- seed: 42
|
45 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
46 |
- lr_scheduler_type: linear
|
47 |
+
- training_steps: 7500
|
48 |
|
49 |
### Training results
|
50 |
|
51 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
52 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
53 |
+
| No log | 0.07 | 300 | 0.0341 | 0.9873 | 0.9698 | 0.9785 | 0.9966 |
|
54 |
+
| 0.173 | 0.14 | 600 | 0.0140 | 0.9895 | 0.9899 | 0.9897 | 0.9982 |
|
55 |
+
| 0.173 | 0.21 | 900 | 0.0135 | 0.9796 | 0.9884 | 0.9840 | 0.9973 |
|
56 |
+
| 0.0216 | 0.29 | 1200 | 0.0087 | 0.9938 | 0.9901 | 0.9920 | 0.9986 |
|
57 |
+
| 0.0138 | 0.36 | 1500 | 0.0061 | 0.9884 | 0.9938 | 0.9911 | 0.9984 |
|
58 |
+
| 0.0138 | 0.43 | 1800 | 0.0060 | 0.9938 | 0.9919 | 0.9929 | 0.9987 |
|
59 |
+
| 0.0083 | 0.5 | 2100 | 0.0058 | 0.9963 | 0.9909 | 0.9935 | 0.9989 |
|
60 |
+
| 0.0083 | 0.57 | 2400 | 0.0064 | 0.9972 | 0.9913 | 0.9942 | 0.9990 |
|
61 |
+
| 0.0092 | 0.64 | 2700 | 0.0083 | 0.9881 | 0.9947 | 0.9914 | 0.9985 |
|
62 |
+
| 0.0087 | 0.72 | 3000 | 0.0057 | 0.9924 | 0.9934 | 0.9929 | 0.9987 |
|
63 |
+
| 0.0087 | 0.79 | 3300 | 0.0044 | 0.9925 | 0.9927 | 0.9926 | 0.9987 |
|
64 |
+
| 0.0066 | 0.86 | 3600 | 0.0049 | 0.9948 | 0.9917 | 0.9932 | 0.9988 |
|
65 |
+
| 0.0066 | 0.93 | 3900 | 0.0082 | 0.9886 | 0.9916 | 0.9901 | 0.9982 |
|
66 |
|
67 |
|
68 |
### Framework versions
|
69 |
|
70 |
+
- Transformers 4.26.1
|
71 |
- Pytorch 1.13.1+cu116
|
72 |
- Datasets 2.9.0
|
73 |
- Tokenizers 0.13.2
|