update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- generated_from_trainer
|
4 |
+
model-index:
|
5 |
+
- name: icdar23-entrydetector_texttokens_breaks_indents_left_diff_right_ref
|
6 |
+
results: []
|
7 |
+
---
|
8 |
+
|
9 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
10 |
+
should probably proofread and complete it, then remove this comment. -->
|
11 |
+
|
12 |
+
# icdar23-entrydetector_texttokens_breaks_indents_left_diff_right_ref
|
13 |
+
|
14 |
+
This model is a fine-tuned version of [HueyNemud/das22-10-camembert_pretrained](https://huggingface.co/HueyNemud/das22-10-camembert_pretrained) on the None dataset.
|
15 |
+
It achieves the following results on the evaluation set:
|
16 |
+
- Loss: 0.0448
|
17 |
+
- Ebegin: {'precision': 0.9843225083986562, 'recall': 0.9788418708240535, 'f1': 0.9815745393634842, 'number': 2694}
|
18 |
+
- Eend: {'precision': 0.9872036130974784, 'recall': 0.9707623982235382, 'f1': 0.9789139764881508, 'number': 2702}
|
19 |
+
- Overall Precision: 0.9858
|
20 |
+
- Overall Recall: 0.9748
|
21 |
+
- Overall F1: 0.9802
|
22 |
+
- Overall Accuracy: 0.9860
|
23 |
+
|
24 |
+
## Model description
|
25 |
+
|
26 |
+
More information needed
|
27 |
+
|
28 |
+
## Intended uses & limitations
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Training and evaluation data
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Training procedure
|
37 |
+
|
38 |
+
### Training hyperparameters
|
39 |
+
|
40 |
+
The following hyperparameters were used during training:
|
41 |
+
- learning_rate: 0.0001
|
42 |
+
- train_batch_size: 2
|
43 |
+
- eval_batch_size: 2
|
44 |
+
- seed: 42
|
45 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
46 |
+
- lr_scheduler_type: linear
|
47 |
+
- training_steps: 7500
|
48 |
+
|
49 |
+
### Training results
|
50 |
+
|
51 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
52 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
53 |
+
| No log | 0.07 | 300 | 0.0868 | 0.9708 | 0.9867 | 0.9787 | 0.9858 |
|
54 |
+
| 0.31 | 0.14 | 600 | 0.0805 | 0.9890 | 0.9606 | 0.9746 | 0.9834 |
|
55 |
+
| 0.31 | 0.21 | 900 | 0.0758 | 0.9793 | 0.9340 | 0.9561 | 0.9733 |
|
56 |
+
| 0.1178 | 0.29 | 1200 | 0.0434 | 0.9845 | 0.9808 | 0.9826 | 0.9885 |
|
57 |
+
| 0.1413 | 0.36 | 1500 | 0.0635 | 0.9909 | 0.9687 | 0.9796 | 0.9867 |
|
58 |
+
| 0.1413 | 0.43 | 1800 | 0.0355 | 0.9848 | 0.9839 | 0.9844 | 0.9907 |
|
59 |
+
| 0.1699 | 0.5 | 2100 | 0.0327 | 0.9914 | 0.9843 | 0.9879 | 0.9920 |
|
60 |
+
| 0.1699 | 0.57 | 2400 | 0.0330 | 0.9904 | 0.9832 | 0.9868 | 0.9913 |
|
61 |
+
| 0.144 | 0.64 | 2700 | 0.0285 | 0.9840 | 0.9891 | 0.9865 | 0.9911 |
|
62 |
+
| 0.0958 | 0.72 | 3000 | 0.0264 | 0.9922 | 0.9836 | 0.9879 | 0.9920 |
|
63 |
+
| 0.0958 | 0.79 | 3300 | 0.0312 | 0.9912 | 0.9852 | 0.9882 | 0.9922 |
|
64 |
+
| 0.0585 | 0.86 | 3600 | 0.0296 | 0.9893 | 0.9862 | 0.9878 | 0.9919 |
|
65 |
+
| 0.0585 | 0.93 | 3900 | 0.0259 | 0.9864 | 0.9899 | 0.9881 | 0.9922 |
|
66 |
+
| 0.0478 | 1.0 | 4200 | 0.0314 | 0.9933 | 0.9649 | 0.9789 | 0.9862 |
|
67 |
+
| 0.0842 | 1.07 | 4500 | 0.0222 | 0.9887 | 0.9897 | 0.9892 | 0.9928 |
|
68 |
+
| 0.0842 | 1.14 | 4800 | 0.0189 | 0.9925 | 0.9883 | 0.9904 | 0.9937 |
|
69 |
+
| 0.075 | 1.22 | 5100 | 0.0241 | 0.9890 | 0.9898 | 0.9894 | 0.9930 |
|
70 |
+
| 0.075 | 1.29 | 5400 | 0.0242 | 0.9915 | 0.9854 | 0.9884 | 0.9924 |
|
71 |
+
| 0.0511 | 1.36 | 5700 | 0.0197 | 0.9929 | 0.9885 | 0.9907 | 0.9939 |
|
72 |
+
| 0.042 | 1.43 | 6000 | 0.0223 | 0.9936 | 0.9852 | 0.9894 | 0.9930 |
|
73 |
+
| 0.042 | 1.5 | 6300 | 0.0203 | 0.9899 | 0.9905 | 0.9902 | 0.9935 |
|
74 |
+
| 0.0596 | 1.57 | 6600 | 0.0215 | 0.9892 | 0.9914 | 0.9903 | 0.9936 |
|
75 |
+
| 0.0596 | 1.65 | 6900 | 0.0211 | 0.9922 | 0.9875 | 0.9898 | 0.9933 |
|
76 |
+
| 0.0489 | 1.72 | 7200 | 0.0212 | 0.9923 | 0.9869 | 0.9896 | 0.9931 |
|
77 |
+
|
78 |
+
|
79 |
+
### Framework versions
|
80 |
+
|
81 |
+
- Transformers 4.26.1
|
82 |
+
- Pytorch 1.13.1+cu116
|
83 |
+
- Datasets 2.9.0
|
84 |
+
- Tokenizers 0.13.2
|