Text Classification
Transformers
Safetensors
English
bert
Inference Endpoints
File size: 2,254 Bytes
172e214
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d7b750e
172e214
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import torch
import argparse
from transformers import AutoTokenizer, AutoModelForSequenceClassification
from datasets import load_dataset


def main(args):
    tokenizer = AutoTokenizer.from_pretrained(args.model_name)
    model = AutoModelForSequenceClassification.from_pretrained(args.model_name, torch_dtype=torch.bfloat16)
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    model.to(device)

    dataset = load_dataset(args.dataset_name, args.dataset_config,
                           split="train", cache_dir="/scratch/cosmo/cache/", num_proc=12)
    dataset = dataset.filter(lambda x, i: i % args.num_shards == args.shard, with_indices=True, num_proc=12)

    def compute_scores(batch):
        inputs = tokenizer(batch[args.text_column], return_tensors="pt", padding="longest", truncation=True).to(device)
        with torch.no_grad():
            outputs = model(**inputs)
            logits = outputs.logits.squeeze(-1).float().cpu().numpy()

        batch["score"] = logits.tolist()
        batch["int_score"] = [int(round(max(0, min(score, 5)))) for score in logits]
        return batch

    dataset = dataset.map(compute_scores, batched=True, batch_size=512)

    while True:
        try:
            config_name = f"{args.output_dataset_config}_{args.shard}"
            dataset.push_to_hub(args.output_dataset_name, config_name=config_name, private=True, max_shard_size="4096MB")
            break
        except Exception as e:
            print(e)
            continue


if __name__ == "__main__":
    parser = argparse.ArgumentParser()

    parser.add_argument("--model_name", type=str, default="HuggingFaceFW/fineweb-edu-classifier")
    parser.add_argument("--dataset_name", type=str, default="HuggingFaceFW/fineweb")
    parser.add_argument("--dataset_config", type=str, default="default")
    parser.add_argument("--output_dataset_name", type=str, default="HuggingFaceFW/fineweb-edu")
    parser.add_argument("--output_dataset_config", type=str, default="default")
    parser.add_argument("--text_column", type=str, default="text")
    parser.add_argument("--shard", type=int, required=True)
    parser.add_argument("--num_shards", type=int, required=True)

    args = parser.parse_args()
    main(args)