File size: 24,653 Bytes
97ecdb4
 
 
 
 
 
 
 
 
e981ffb
8d44a71
 
 
 
 
0f17b36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc24cab
0f17b36
 
f4e901c
0f17b36
 
 
 
 
 
 
 
 
 
 
 
 
 
dc24cab
0f17b36
 
f4e901c
0f17b36
 
 
 
 
 
 
 
 
 
 
 
 
 
dc24cab
0f17b36
 
f4e901c
0f17b36
 
 
 
 
 
 
 
 
 
 
 
 
 
dc24cab
0f17b36
 
f4e901c
0f17b36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc24cab
0f17b36
 
f4e901c
0f17b36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc24cab
0f17b36
 
f4e901c
0f17b36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc24cab
0f17b36
 
f4e901c
0f17b36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
97ecdb4
 
 
 
 
 
 
 
8d4f1f7
97ecdb4
36db76e
97ecdb4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
99dc9c4
97ecdb4
63bc8ee
 
0f4b871
63bc8ee
0f4b871
63bc8ee
 
 
 
 
 
0f4b871
63bc8ee
0f4b871
63bc8ee
 
 
 
 
 
 
 
0f4b871
 
 
 
 
 
 
97ecdb4
 
 
8bf7bff
97ecdb4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
abe3655
97ecdb4
 
 
 
 
0f4b871
97ecdb4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0f4b871
 
 
97ecdb4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af28f1d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c2339b6
 
 
 
 
 
 
 
 
 
 
 
 
0f17b36
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
---
tags:
- generated_from_trainer
license: mit
datasets:
- HuggingFaceH4/ultrachat_200k
- HuggingFaceH4/ultrafeedback_binarized
language:
- en
base_model: mistralai/Mistral-7B-v0.1
widget:
  - text: "<|system|>\nYou are a pirate chatbot who always responds with Arr!</s>\n<|user|>\nThere's a llama on my lawn, how can I get rid of him?</s>\n<|assistant|>\n"
    output:
      text: "Arr! 'Tis a puzzlin' matter, me hearty! A llama on yer lawn be a rare sight, but I've got a plan that might help ye get rid of 'im. Ye'll need to gather some carrots and hay, and then lure the llama away with the promise of a tasty treat. Once he's gone, ye can clean up yer lawn and enjoy the peace and quiet once again. But beware, me hearty, for there may be more llamas where that one came from! Arr!"
pipeline_tag: text-generation
model-index:
- name: zephyr-7b-beta
  results:
  # AI2 Reasoning Challenge (25-Shot)
  - task: 
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
       - type: acc_norm
         name: normalized accuracy
         value: 62.03071672354948
    source:
      name: Open LLM Leaderboard
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=HuggingFaceH4/zephyr-7b-beta

  # HellaSwag (10-shot)
  - task: 
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
       - type: acc_norm
         name: normalized accuracy
         value: 84.35570603465445
    source:
      name: Open LLM Leaderboard
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=HuggingFaceH4/zephyr-7b-beta

  # DROP (3-shot)
  - task: 
      type: text-generation
      name: Text Generation
    dataset:
      name: Drop (3-Shot)
      type: drop
      split: validation
      args:
        num_few_shot: 3
    metrics:
       - type: f1
         name: f1 score
         value: 9.662437080536909
    source:
      name: Open LLM Leaderboard
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=HuggingFaceH4/zephyr-7b-beta

  # TruthfulQA (0-shot)
  - task: 
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
       - type: mc2
         value: 57.44916942762855
    source:
      name: Open LLM Leaderboard
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=HuggingFaceH4/zephyr-7b-beta

  # GSM8k (5-shot)
  - task: 
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
       - type: acc
         name: accuracy
         value: 12.736921910538287
    source:
      name: Open LLM Leaderboard
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=HuggingFaceH4/zephyr-7b-beta

  # MMLU (5-Shot)
  - task: 
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
       - type: acc
         name: accuracy
         value: 61.07
    source:
      name: Open LLM Leaderboard
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=HuggingFaceH4/zephyr-7b-beta

  # Winogrande (5-shot)
  - task: 
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
       - type: acc
         name: accuracy
         value: 77.74269928966061
    source:
      name: Open LLM Leaderboard
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=HuggingFaceH4/zephyr-7b-beta

  # AlpacaEval (taken from model card)
  - task: 
      type: text-generation
      name: Text Generation
    dataset:
      name: AlpacaEval
      type: tatsu-lab/alpaca_eval
    metrics:
       - type: unknown
         name: win rate
         value: 0.9060
    source:
      url: https://tatsu-lab.github.io/alpaca_eval/

  # MT-Bench (taken from model card)
  - task: 
      type: text-generation
      name: Text Generation
    dataset:
      name: MT-Bench
      type: unknown
    metrics:
       - type: unknown
         name: score
         value: 7.34
    source:
      url: https://huggingface.co/spaces/lmsys/mt-bench
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

<img src="https://huggingface.co/HuggingFaceH4/zephyr-7b-alpha/resolve/main/thumbnail.png" alt="Zephyr Logo" width="800" style="margin-left:'auto' margin-right:'auto' display:'block'"/>


# Model Card for Zephyr 7B β

Zephyr is a series of language models that are trained to act as helpful assistants. Zephyr-7B-β is the second model in the series, and is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) that was trained on on a mix of publicly available, synthetic datasets using [Direct Preference Optimization (DPO)](https://arxiv.org/abs/2305.18290). We found that removing the in-built alignment of these datasets boosted performance on [MT Bench](https://huggingface.co/spaces/lmsys/mt-bench) and made the model more helpful. However, this means that model is likely to generate problematic text when prompted to do so. You can find more details in the [technical report](https://arxiv.org/abs/2310.16944).


## Model description

- **Model type:** A 7B parameter GPT-like model fine-tuned on a mix of publicly available, synthetic datasets.
- **Language(s) (NLP):** Primarily English
- **License:** MIT
- **Finetuned from model:** [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1)

### Model Sources

<!-- Provide the basic links for the model. -->

- **Repository:** https://github.com/huggingface/alignment-handbook
- **Demo:** https://huggingface.co/spaces/HuggingFaceH4/zephyr-chat
- **Chatbot Arena:** Evaluate Zephyr 7B against 10+ LLMs in the LMSYS arena: http://arena.lmsys.org

## Performance

At the time of release, Zephyr-7B-β is the highest ranked 7B chat model on the [MT-Bench](https://huggingface.co/spaces/lmsys/mt-bench) and [AlpacaEval](https://tatsu-lab.github.io/alpaca_eval/) benchmarks:

| Model | Size | Alignment | MT-Bench (score) | AlpacaEval (win rate %) |
|-------------|-----|----|---------------|--------------|
| StableLM-Tuned-α | 7B| dSFT |2.75| -|
| MPT-Chat |  7B |dSFT |5.42| -|
| Xwin-LMv0.1 | 7B| dPPO| 6.19| 87.83|
| Mistral-Instructv0.1 | 7B|  - | 6.84 |-|
| Zephyr-7b-α |7B|  dDPO| 6.88| -|
| **Zephyr-7b-β** 🪁 | **7B** | **dDPO** | **7.34** | **90.60** |
| Falcon-Instruct |  40B |dSFT |5.17 |45.71|
| Guanaco | 65B |  SFT |6.41| 71.80|
| Llama2-Chat |  70B |RLHF |6.86| 92.66|
| Vicuna v1.3 |  33B |dSFT |7.12 |88.99|
| WizardLM v1.0 |  70B |dSFT |7.71 |-|
| Xwin-LM v0.1 |   70B |dPPO |- |95.57|
| GPT-3.5-turbo | - |RLHF |7.94 |89.37|
| Claude 2 |  - |RLHF |8.06| 91.36|
| GPT-4 |  -| RLHF |8.99| 95.28|

In particular, on several categories of MT-Bench, Zephyr-7B-β has strong performance compared to larger open models like Llama2-Chat-70B:

![image/png](https://cdn-uploads.huggingface.co/production/uploads/6200d0a443eb0913fa2df7cc/raxvt5ma16d7T23my34WC.png)

However, on more complex tasks like coding and mathematics, Zephyr-7B-β lags behind proprietary models and more research is needed to close the gap.


## Intended uses & limitations

The model was initially fine-tuned on a filtered and preprocessed of the [`UltraChat`](https://huggingface.co/datasets/stingning/ultrachat) dataset, which contains a diverse range of synthetic dialogues generated by ChatGPT. 
We then further aligned the model with [🤗 TRL's](https://github.com/huggingface/trl) `DPOTrainer` on the [openbmb/UltraFeedback](https://huggingface.co/datasets/openbmb/UltraFeedback) dataset, which contains 64k prompts and model completions that are ranked by GPT-4. As a result, the model can be used for chat and you can check out our [demo](https://huggingface.co/spaces/HuggingFaceH4/zephyr-chat) to test its capabilities. 

You can find the datasets used for training Zephyr-7B-β [here](https://huggingface.co/collections/HuggingFaceH4/zephyr-7b-6538c6d6d5ddd1cbb1744a66)

Here's how you can run the model using the `pipeline()` function from 🤗 Transformers:

```python
# Install transformers from source - only needed for versions <= v4.34
# pip install git+https://github.com/huggingface/transformers.git
# pip install accelerate

import torch
from transformers import pipeline

pipe = pipeline("text-generation", model="HuggingFaceH4/zephyr-7b-beta", torch_dtype=torch.bfloat16, device_map="auto")

# We use the tokenizer's chat template to format each message - see https://huggingface.co/docs/transformers/main/en/chat_templating
messages = [
    {
        "role": "system",
        "content": "You are a friendly chatbot who always responds in the style of a pirate",
    },
    {"role": "user", "content": "How many helicopters can a human eat in one sitting?"},
]
prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipe(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
# <|system|>
# You are a friendly chatbot who always responds in the style of a pirate.</s>
# <|user|>
# How many helicopters can a human eat in one sitting?</s>
# <|assistant|>
# Ah, me hearty matey! But yer question be a puzzler! A human cannot eat a helicopter in one sitting, as helicopters are not edible. They be made of metal, plastic, and other materials, not food!
```

## Bias, Risks, and Limitations

<!-- This section is meant to convey both technical and sociotechnical limitations. -->

Zephyr-7B-β has not been aligned to human preferences for safety within the RLHF phase or deployed with in-the-loop filtering of responses like ChatGPT, so the model can produce problematic outputs (especially when prompted to do so). 
It is also unknown what the size and composition of the corpus was used to train the base model (`mistralai/Mistral-7B-v0.1`), however it is likely to have included a mix of Web data and technical sources like books and code. See the [Falcon 180B model card](https://huggingface.co/tiiuae/falcon-180B#training-data) for an example of this.


## Training and evaluation data

During DPO training, this model achieves the following results on the evaluation set:

- Loss: 0.7496
- Rewards/chosen: -4.5221
- Rewards/rejected: -8.3184
- Rewards/accuracies: 0.7812
- Rewards/margins: 3.7963
- Logps/rejected: -340.1541
- Logps/chosen: -299.4561
- Logits/rejected: -2.3081
- Logits/chosen: -2.3531


### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-07
- train_batch_size: 2
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 16
- total_train_batch_size: 32
- total_eval_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3.0

### Training results

The table below shows the full set of DPO training metrics:


| Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
|:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
| 0.6284        | 0.05  | 100  | 0.6098          | 0.0425         | -0.1872          | 0.7344             | 0.2297          | -258.8416      | -253.8099    | -2.7976         | -2.8234       |
| 0.4908        | 0.1   | 200  | 0.5426          | -0.0279        | -0.6842          | 0.75               | 0.6563          | -263.8124      | -254.5145    | -2.7719         | -2.7960       |
| 0.5264        | 0.15  | 300  | 0.5324          | 0.0414         | -0.9793          | 0.7656             | 1.0207          | -266.7627      | -253.8209    | -2.7892         | -2.8122       |
| 0.5536        | 0.21  | 400  | 0.4957          | -0.0185        | -1.5276          | 0.7969             | 1.5091          | -272.2460      | -254.4203    | -2.8542         | -2.8764       |
| 0.5362        | 0.26  | 500  | 0.5031          | -0.2630        | -1.5917          | 0.7812             | 1.3287          | -272.8869      | -256.8653    | -2.8702         | -2.8958       |
| 0.5966        | 0.31  | 600  | 0.5963          | -0.2993        | -1.6491          | 0.7812             | 1.3499          | -273.4614      | -257.2279    | -2.8778         | -2.8986       |
| 0.5014        | 0.36  | 700  | 0.5382          | -0.2859        | -1.4750          | 0.75               | 1.1891          | -271.7204      | -257.0942    | -2.7659         | -2.7869       |
| 0.5334        | 0.41  | 800  | 0.5677          | -0.4289        | -1.8968          | 0.7969             | 1.4679          | -275.9378      | -258.5242    | -2.7053         | -2.7265       |
| 0.5251        | 0.46  | 900  | 0.5772          | -0.2116        | -1.3107          | 0.7344             | 1.0991          | -270.0768      | -256.3507    | -2.8463         | -2.8662       |
| 0.5205        | 0.52  | 1000 | 0.5262          | -0.3792        | -1.8585          | 0.7188             | 1.4793          | -275.5552      | -258.0276    | -2.7893         | -2.7979       |
| 0.5094        | 0.57  | 1100 | 0.5433          | -0.6279        | -1.9368          | 0.7969             | 1.3089          | -276.3377      | -260.5136    | -2.7453         | -2.7536       |
| 0.5837        | 0.62  | 1200 | 0.5349          | -0.3780        | -1.9584          | 0.7656             | 1.5804          | -276.5542      | -258.0154    | -2.7643         | -2.7756       |
| 0.5214        | 0.67  | 1300 | 0.5732          | -1.0055        | -2.2306          | 0.7656             | 1.2251          | -279.2761      | -264.2903    | -2.6986         | -2.7113       |
| 0.6914        | 0.72  | 1400 | 0.5137          | -0.6912        | -2.1775          | 0.7969             | 1.4863          | -278.7448      | -261.1467    | -2.7166         | -2.7275       |
| 0.4655        | 0.77  | 1500 | 0.5090          | -0.7987        | -2.2930          | 0.7031             | 1.4943          | -279.8999      | -262.2220    | -2.6651         | -2.6838       |
| 0.5731        | 0.83  | 1600 | 0.5312          | -0.8253        | -2.3520          | 0.7812             | 1.5268          | -280.4902      | -262.4876    | -2.6543         | -2.6728       |
| 0.5233        | 0.88  | 1700 | 0.5206          | -0.4573        | -2.0951          | 0.7812             | 1.6377          | -277.9205      | -258.8084    | -2.6870         | -2.7097       |
| 0.5593        | 0.93  | 1800 | 0.5231          | -0.5508        | -2.2000          | 0.7969             | 1.6492          | -278.9703      | -259.7433    | -2.6221         | -2.6519       |
| 0.4967        | 0.98  | 1900 | 0.5290          | -0.5340        | -1.9570          | 0.8281             | 1.4230          | -276.5395      | -259.5749    | -2.6564         | -2.6878       |
| 0.0921        | 1.03  | 2000 | 0.5368          | -1.1376        | -3.1615          | 0.7812             | 2.0239          | -288.5854      | -265.6111    | -2.6040         | -2.6345       |
| 0.0733        | 1.08  | 2100 | 0.5453          | -1.1045        | -3.4451          | 0.7656             | 2.3406          | -291.4208      | -265.2799    | -2.6289         | -2.6595       |
| 0.0972        | 1.14  | 2200 | 0.5571          | -1.6915        | -3.9823          | 0.8125             | 2.2908          | -296.7934      | -271.1505    | -2.6471         | -2.6709       |
| 0.1058        | 1.19  | 2300 | 0.5789          | -1.0621        | -3.8941          | 0.7969             | 2.8319          | -295.9106      | -264.8563    | -2.5527         | -2.5798       |
| 0.2423        | 1.24  | 2400 | 0.5455          | -1.1963        | -3.5590          | 0.7812             | 2.3627          | -292.5599      | -266.1981    | -2.5414         | -2.5784       |
| 0.1177        | 1.29  | 2500 | 0.5889          | -1.8141        | -4.3942          | 0.7969             | 2.5801          | -300.9120      | -272.3761    | -2.4802         | -2.5189       |
| 0.1213        | 1.34  | 2600 | 0.5683          | -1.4608        | -3.8420          | 0.8125             | 2.3812          | -295.3901      | -268.8436    | -2.4774         | -2.5207       |
| 0.0889        | 1.39  | 2700 | 0.5890          | -1.6007        | -3.7337          | 0.7812             | 2.1330          | -294.3068      | -270.2423    | -2.4123         | -2.4522       |
| 0.0995        | 1.45  | 2800 | 0.6073          | -1.5519        | -3.8362          | 0.8281             | 2.2843          | -295.3315      | -269.7538    | -2.4685         | -2.5050       |
| 0.1145        | 1.5   | 2900 | 0.5790          | -1.7939        | -4.2876          | 0.8438             | 2.4937          | -299.8461      | -272.1744    | -2.4272         | -2.4674       |
| 0.0644        | 1.55  | 3000 | 0.5735          | -1.7285        | -4.2051          | 0.8125             | 2.4766          | -299.0209      | -271.5201    | -2.4193         | -2.4574       |
| 0.0798        | 1.6   | 3100 | 0.5537          | -1.7226        | -4.2850          | 0.8438             | 2.5624          | -299.8200      | -271.4610    | -2.5367         | -2.5696       |
| 0.1013        | 1.65  | 3200 | 0.5575          | -1.5715        | -3.9813          | 0.875              | 2.4098          | -296.7825      | -269.9498    | -2.4926         | -2.5267       |
| 0.1254        | 1.7   | 3300 | 0.5905          | -1.6412        | -4.4703          | 0.8594             | 2.8291          | -301.6730      | -270.6473    | -2.5017         | -2.5340       |
| 0.085         | 1.76  | 3400 | 0.6133          | -1.9159        | -4.6760          | 0.8438             | 2.7601          | -303.7296      | -273.3941    | -2.4614         | -2.4960       |
| 0.065         | 1.81  | 3500 | 0.6074          | -1.8237        | -4.3525          | 0.8594             | 2.5288          | -300.4951      | -272.4724    | -2.4597         | -2.5004       |
| 0.0755        | 1.86  | 3600 | 0.5836          | -1.9252        | -4.4005          | 0.8125             | 2.4753          | -300.9748      | -273.4872    | -2.4327         | -2.4716       |
| 0.0746        | 1.91  | 3700 | 0.5789          | -1.9280        | -4.4906          | 0.8125             | 2.5626          | -301.8762      | -273.5149    | -2.4686         | -2.5115       |
| 0.1348        | 1.96  | 3800 | 0.6015          | -1.8658        | -4.2428          | 0.8281             | 2.3769          | -299.3976      | -272.8936    | -2.4943         | -2.5393       |
| 0.0217        | 2.01  | 3900 | 0.6122          | -2.3335        | -4.9229          | 0.8281             | 2.5894          | -306.1988      | -277.5699    | -2.4841         | -2.5272       |
| 0.0219        | 2.07  | 4000 | 0.6522          | -2.9890        | -6.0164          | 0.8281             | 3.0274          | -317.1334      | -284.1248    | -2.4105         | -2.4545       |
| 0.0119        | 2.12  | 4100 | 0.6922          | -3.4777        | -6.6749          | 0.7969             | 3.1972          | -323.7187      | -289.0121    | -2.4272         | -2.4699       |
| 0.0153        | 2.17  | 4200 | 0.6993          | -3.2406        | -6.6775          | 0.7969             | 3.4369          | -323.7453      | -286.6413    | -2.4047         | -2.4465       |
| 0.011         | 2.22  | 4300 | 0.7178          | -3.7991        | -7.4397          | 0.7656             | 3.6406          | -331.3667      | -292.2260    | -2.3843         | -2.4290       |
| 0.0072        | 2.27  | 4400 | 0.6840          | -3.3269        | -6.8021          | 0.8125             | 3.4752          | -324.9908      | -287.5042    | -2.4095         | -2.4536       |
| 0.0197        | 2.32  | 4500 | 0.7013          | -3.6890        | -7.3014          | 0.8125             | 3.6124          | -329.9841      | -291.1250    | -2.4118         | -2.4543       |
| 0.0182        | 2.37  | 4600 | 0.7476          | -3.8994        | -7.5366          | 0.8281             | 3.6372          | -332.3356      | -293.2291    | -2.4163         | -2.4565       |
| 0.0125        | 2.43  | 4700 | 0.7199          | -4.0560        | -7.5765          | 0.8438             | 3.5204          | -332.7345      | -294.7952    | -2.3699         | -2.4100       |
| 0.0082        | 2.48  | 4800 | 0.7048          | -3.6613        | -7.1356          | 0.875              | 3.4743          | -328.3255      | -290.8477    | -2.3925         | -2.4303       |
| 0.0118        | 2.53  | 4900 | 0.6976          | -3.7908        | -7.3152          | 0.8125             | 3.5244          | -330.1224      | -292.1431    | -2.3633         | -2.4047       |
| 0.0118        | 2.58  | 5000 | 0.7198          | -3.9049        | -7.5557          | 0.8281             | 3.6508          | -332.5271      | -293.2844    | -2.3764         | -2.4194       |
| 0.006         | 2.63  | 5100 | 0.7506          | -4.2118        | -7.9149          | 0.8125             | 3.7032          | -336.1194      | -296.3530    | -2.3407         | -2.3860       |
| 0.0143        | 2.68  | 5200 | 0.7408          | -4.2433        | -7.9802          | 0.8125             | 3.7369          | -336.7721      | -296.6682    | -2.3509         | -2.3946       |
| 0.0057        | 2.74  | 5300 | 0.7552          | -4.3392        | -8.0831          | 0.7969             | 3.7439          | -337.8013      | -297.6275    | -2.3388         | -2.3842       |
| 0.0138        | 2.79  | 5400 | 0.7404          | -4.2395        | -7.9762          | 0.8125             | 3.7367          | -336.7322      | -296.6304    | -2.3286         | -2.3737       |
| 0.0079        | 2.84  | 5500 | 0.7525          | -4.4466        | -8.2196          | 0.7812             | 3.7731          | -339.1662      | -298.7007    | -2.3200         | -2.3641       |
| 0.0077        | 2.89  | 5600 | 0.7520          | -4.5586        | -8.3485          | 0.7969             | 3.7899          | -340.4545      | -299.8206    | -2.3078         | -2.3517       |
| 0.0094        | 2.94  | 5700 | 0.7527          | -4.5542        | -8.3509          | 0.7812             | 3.7967          | -340.4790      | -299.7773    | -2.3062         | -2.3510       |
| 0.0054        | 2.99  | 5800 | 0.7520          | -4.5169        | -8.3079          | 0.7812             | 3.7911          | -340.0493      | -299.4038    | -2.3081         | -2.3530       |


### Framework versions

- Transformers 4.35.0.dev0
- Pytorch 2.0.1+cu118
- Datasets 2.12.0
- Tokenizers 0.14.0

## Citation

If you find Zephyr-7B-β is useful in your work, please cite it with:

```
@misc{tunstall2023zephyr,
      title={Zephyr: Direct Distillation of LM Alignment}, 
      author={Lewis Tunstall and Edward Beeching and Nathan Lambert and Nazneen Rajani and Kashif Rasul and Younes Belkada and Shengyi Huang and Leandro von Werra and Clémentine Fourrier and Nathan Habib and Nathan Sarrazin and Omar Sanseviero and Alexander M. Rush and Thomas Wolf},
      year={2023},
      eprint={2310.16944},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_HuggingFaceH4__zephyr-7b-beta)

| Metric                | Value                     |
|-----------------------|---------------------------|
| Avg.                  | 52.15   |
| ARC (25-shot)         | 62.03          |
| HellaSwag (10-shot)   | 84.36    |
| MMLU (5-shot)         | 61.07         |
| TruthfulQA (0-shot)   | 57.45   |
| Winogrande (5-shot)   | 77.74   |
| GSM8K (5-shot)        | 12.74        |
| DROP (3-shot)         | 9.66         |