VictorSanh
commited on
Commit
·
9505bbc
1
Parent(s):
a1abacc
modeling
Browse files- configuration_img2html.py +310 -0
- modeling_img2html.py +1772 -0
- vision.py +1361 -0
configuration_img2html.py
ADDED
@@ -0,0 +1,310 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 Mistral AI and the HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" Img2HTML model configuration"""
|
16 |
+
from transformers.configuration_utils import PretrainedConfig
|
17 |
+
from transformers.utils import logging
|
18 |
+
|
19 |
+
|
20 |
+
logger = logging.get_logger(__name__)
|
21 |
+
|
22 |
+
MISTRAL_PRETRAINED_CONFIG_ARCHIVE_MAP = {
|
23 |
+
"HuggingFaceM4/Img2HTML": "https://huggingface.co/HuggingFaceM4/Img2HTML/resolve/main/config.json",
|
24 |
+
}
|
25 |
+
|
26 |
+
|
27 |
+
class VMistralVisionConfig(PretrainedConfig):
|
28 |
+
r"""
|
29 |
+
"""
|
30 |
+
model_type = "vmistral"
|
31 |
+
|
32 |
+
def __init__(
|
33 |
+
self,
|
34 |
+
hidden_size=768,
|
35 |
+
intermediate_size=3072,
|
36 |
+
projection_dim=512,
|
37 |
+
num_hidden_layers=12,
|
38 |
+
num_attention_heads=12,
|
39 |
+
num_channels=3,
|
40 |
+
image_size=224,
|
41 |
+
patch_size=32,
|
42 |
+
hidden_act="gelu_pytorch_tanh",
|
43 |
+
layer_norm_eps=1e-6,
|
44 |
+
attention_dropout=0.0,
|
45 |
+
initializer_range=0.02,
|
46 |
+
initializer_factor=1.0,
|
47 |
+
_flash_attn_2_enabled=True,
|
48 |
+
**kwargs,
|
49 |
+
):
|
50 |
+
super().__init__(**kwargs)
|
51 |
+
|
52 |
+
self.hidden_size = hidden_size
|
53 |
+
self.intermediate_size = intermediate_size
|
54 |
+
self.projection_dim = projection_dim
|
55 |
+
self.num_hidden_layers = num_hidden_layers
|
56 |
+
self.num_attention_heads = num_attention_heads
|
57 |
+
self.num_channels = num_channels
|
58 |
+
self.patch_size = patch_size
|
59 |
+
self.image_size = image_size
|
60 |
+
self.initializer_range = initializer_range
|
61 |
+
self.initializer_factor = initializer_factor
|
62 |
+
self.attention_dropout = attention_dropout
|
63 |
+
self.layer_norm_eps = layer_norm_eps
|
64 |
+
self.hidden_act = hidden_act
|
65 |
+
self._flash_attn_2_enabled = _flash_attn_2_enabled
|
66 |
+
|
67 |
+
|
68 |
+
class VMistralPerceiverConfig(PretrainedConfig):
|
69 |
+
r"""
|
70 |
+
TThis is the configuration class to store the configuration of a [`MistralModel`]. It is used to instantiate an
|
71 |
+
Mistral model according to the specified arguments, defining the model architecture. Instantiating a configuration
|
72 |
+
with the defaults will yield a similar configuration to that of the Mistral-7B-v0.1 or Mistral-7B-Instruct-v0.1.
|
73 |
+
|
74 |
+
[mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1)
|
75 |
+
[mistralai/Mistral-7B-Instruct-v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1)
|
76 |
+
|
77 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
78 |
+
documentation from [`PretrainedConfig`] for more information.
|
79 |
+
|
80 |
+
Args:
|
81 |
+
use_resampler (`bool`, *optional*, defaults to `False`):
|
82 |
+
Whether or not to use the resampler
|
83 |
+
resampler_n_latents (`int`, *optional*, defaults to ):
|
84 |
+
Number of latent embeddings to resample ("compress") the input sequence to (usually < 128).
|
85 |
+
resampler_depth (`int`, *optional*, defaults to 6):
|
86 |
+
Depth of the Perceiver Resampler (Transformer w/ cross attention). Should be shallow (< 3).
|
87 |
+
resampler_n_heads (`int`, *optional*, defaults to 16):
|
88 |
+
Number of heads in each Transformer block (for multi-headed self-attention).
|
89 |
+
resampler_head_dim (`int`, *optional*, defaults to 96):
|
90 |
+
Dimensionality of each head projection in the Transformer block.
|
91 |
+
qk_layer_norms_perceiver (`bool`, *optional*, defaults to `False`):
|
92 |
+
Whether or not to use qk layer norms in perceiver
|
93 |
+
"""
|
94 |
+
model_type = "vmistral"
|
95 |
+
|
96 |
+
def __init__(
|
97 |
+
self,
|
98 |
+
resampler_n_latents=64,
|
99 |
+
resampler_depth=6,
|
100 |
+
resampler_n_heads=16,
|
101 |
+
resampler_head_dim=96,
|
102 |
+
qk_layer_norms_perceiver=False,
|
103 |
+
**kwargs,
|
104 |
+
):
|
105 |
+
self.resampler_n_latents = resampler_n_latents
|
106 |
+
self.resampler_depth = resampler_depth
|
107 |
+
self.resampler_n_heads = resampler_n_heads
|
108 |
+
self.resampler_head_dim = resampler_head_dim
|
109 |
+
self.qk_layer_norms_perceiver = qk_layer_norms_perceiver
|
110 |
+
|
111 |
+
super().__init__(**kwargs)
|
112 |
+
|
113 |
+
|
114 |
+
class VMistralConfig(PretrainedConfig):
|
115 |
+
r"""
|
116 |
+
This is the configuration class to store the configuration of a [`MistralModel`]. It is used to instantiate an
|
117 |
+
Mistral model according to the specified arguments, defining the model architecture. Instantiating a configuration
|
118 |
+
with the defaults will yield a similar configuration to that of the Mistral-7B-v0.1 or Mistral-7B-Instruct-v0.1.
|
119 |
+
|
120 |
+
[mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1)
|
121 |
+
[mistralai/Mistral-7B-Instruct-v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1)
|
122 |
+
|
123 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
124 |
+
documentation from [`PretrainedConfig`] for more information.
|
125 |
+
|
126 |
+
Args:
|
127 |
+
additional_vocab_size (`int`, *optional`, defaults to 0):
|
128 |
+
Additional vocabulary size of the model, typically for the special "<img>" token. Additional vocab tokens
|
129 |
+
are always trainable whereas regular vocab tokens can be frozen or not.
|
130 |
+
vocab_size (`int`, *optional*, defaults to 32000):
|
131 |
+
Vocabulary size of the Mistral model. Defines the number of different tokens that can be represented by the
|
132 |
+
`inputs_ids` passed when calling [`MistralModel`]
|
133 |
+
hidden_size (`int`, *optional*, defaults to 4096):
|
134 |
+
Dimension of the hidden representations.
|
135 |
+
intermediate_size (`int`, *optional*, defaults to 14336):
|
136 |
+
Dimension of the MLP representations.
|
137 |
+
num_hidden_layers (`int`, *optional*, defaults to 32):
|
138 |
+
Number of hidden layers in the Transformer encoder.
|
139 |
+
num_attention_heads (`int`, *optional*, defaults to 32):
|
140 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
141 |
+
num_key_value_heads (`int`, *optional*, defaults to 8):
|
142 |
+
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
143 |
+
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
144 |
+
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
145 |
+
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
146 |
+
by meanpooling all the original heads within that group. For more details checkout [this
|
147 |
+
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `8`.
|
148 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
149 |
+
The non-linear activation function (function or string) in the decoder.
|
150 |
+
max_position_embeddings (`int`, *optional*, defaults to `4096*32`):
|
151 |
+
The maximum sequence length that this model might ever be used with. Mistral's sliding window attention
|
152 |
+
allows sequence of up to 4096*32 tokens.
|
153 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
154 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
155 |
+
alpha_initializer (`str`, *optional*, defaults to `"zeros"`):
|
156 |
+
Initialization type for the alphas.
|
157 |
+
alphas_initializer_range (`float`, *optional*, defaults to 0.0):
|
158 |
+
The standard deviation of the truncated_normal_initializer for initializing the alphas in the Gated Cross
|
159 |
+
Attention.
|
160 |
+
alpha_type (`str`, *optional*, defaults to `"float"`):
|
161 |
+
Whether the gating alphas should be vectors or single floats.
|
162 |
+
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
|
163 |
+
The epsilon used by the rms normalization layers.
|
164 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
165 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
166 |
+
relevant if `config.is_decoder=True`.
|
167 |
+
pad_token_id (`int`, *optional*):
|
168 |
+
The id of the padding token.
|
169 |
+
bos_token_id (`int`, *optional*, defaults to 1):
|
170 |
+
The id of the "beginning-of-sequence" token.
|
171 |
+
eos_token_id (`int`, *optional*, defaults to 2):
|
172 |
+
The id of the "end-of-sequence" token.
|
173 |
+
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
174 |
+
Whether the model's input and output word embeddings should be tied.
|
175 |
+
rope_theta (`float`, *optional*, defaults to 10000.0):
|
176 |
+
The base period of the RoPE embeddings.
|
177 |
+
sliding_window (`int`, *optional*, defaults to 4096):
|
178 |
+
Sliding window attention window size. If not specified, will default to `4096`.
|
179 |
+
cross_layer_interval (`int`, *optional*, default to 1)
|
180 |
+
Interval for cross attention (from text to image) layers.
|
181 |
+
qk_layer_norms (`bool`, *optional*, defaults to `False`): Whether to add layer norm after q and k
|
182 |
+
freeze_text_layers (`bool`, *optional*, defaults to `True`): Whether to freeze text layers
|
183 |
+
freeze_text_module_exceptions (`bool`, *optional*, defaults to `[]`):
|
184 |
+
Exceptions to freezing text layers when `freeze_text_layers` is `True`
|
185 |
+
freeze_lm_head (`bool`, *optional*, defaults to `False`): Whether to freeze lm head
|
186 |
+
freeze_vision_layers (`bool`, *optional*, defaults to `True`): Whether to freeze vision layers
|
187 |
+
freeze_vision_module_exceptions (`bool`, *optional*, defaults to `[]`):
|
188 |
+
Exceptions to freezing vision layers when `freeze_vision_layers` is `True`
|
189 |
+
use_resampler (`bool`, *optional*, defaults to `False`): Whether to use the Resampler
|
190 |
+
vision_config (`IdeficsVisionConfig`, *optional*): Custom vision config or dict
|
191 |
+
perceiver_config (`IdeficsPerceiverConfig`, *optional*): Custom perceiver config or dict
|
192 |
+
|
193 |
+
Example:
|
194 |
+
```python
|
195 |
+
>>> from transformers import MistralModel, MistralConfig
|
196 |
+
|
197 |
+
>>> # Initializing a Mistral 7B style configuration
|
198 |
+
>>> configuration = MistralConfig()
|
199 |
+
|
200 |
+
>>> # Initializing a model from the Mistral 7B style configuration
|
201 |
+
>>> model = MistralModel(configuration)
|
202 |
+
|
203 |
+
>>> # Accessing the model configuration
|
204 |
+
>>> configuration = model.config
|
205 |
+
```"""
|
206 |
+
model_type = "vmistral"
|
207 |
+
is_composition = False
|
208 |
+
|
209 |
+
def __init__(
|
210 |
+
self,
|
211 |
+
additional_vocab_size=0,
|
212 |
+
vocab_size=32000,
|
213 |
+
hidden_size=4096,
|
214 |
+
intermediate_size=14336,
|
215 |
+
num_hidden_layers=32,
|
216 |
+
num_attention_heads=32,
|
217 |
+
num_key_value_heads=8,
|
218 |
+
hidden_act="silu",
|
219 |
+
max_position_embeddings=4096 * 32,
|
220 |
+
initializer_range=0.02,
|
221 |
+
alpha_initializer="zeros",
|
222 |
+
alphas_initializer_range=0.0,
|
223 |
+
alpha_type="float",
|
224 |
+
rms_norm_eps=1e-6,
|
225 |
+
use_cache=True,
|
226 |
+
pad_token_id=0, # None in the original configuration_mistral, we set it to the unk_token_id
|
227 |
+
bos_token_id=1,
|
228 |
+
eos_token_id=2,
|
229 |
+
image_token_id=32_001,
|
230 |
+
tie_word_embeddings=False,
|
231 |
+
rope_theta=10000.0,
|
232 |
+
sliding_window=4096,
|
233 |
+
cross_layer_interval=1,
|
234 |
+
qk_layer_norms=False,
|
235 |
+
freeze_text_layers=True,
|
236 |
+
freeze_text_module_exceptions=[],
|
237 |
+
freeze_lm_head=False,
|
238 |
+
freeze_vision_layers=True,
|
239 |
+
freeze_vision_module_exceptions=[],
|
240 |
+
attention_dropout=0.0,
|
241 |
+
_flash_attn_2_enabled=True,
|
242 |
+
use_resampler=False,
|
243 |
+
vision_config=None,
|
244 |
+
perceiver_config=None,
|
245 |
+
**kwargs,
|
246 |
+
):
|
247 |
+
self.vocab_size = vocab_size
|
248 |
+
self.additional_vocab_size = additional_vocab_size
|
249 |
+
self.image_token_id = image_token_id
|
250 |
+
self.max_position_embeddings = max_position_embeddings
|
251 |
+
self.hidden_size = hidden_size
|
252 |
+
self.intermediate_size = intermediate_size
|
253 |
+
self.num_hidden_layers = num_hidden_layers
|
254 |
+
self.num_attention_heads = num_attention_heads
|
255 |
+
self.sliding_window = sliding_window
|
256 |
+
|
257 |
+
# for backward compatibility
|
258 |
+
if num_key_value_heads is None:
|
259 |
+
num_key_value_heads = num_attention_heads
|
260 |
+
|
261 |
+
self.num_key_value_heads = num_key_value_heads
|
262 |
+
self.hidden_act = hidden_act
|
263 |
+
self.initializer_range = initializer_range
|
264 |
+
self.alpha_initializer = alpha_initializer
|
265 |
+
self.alphas_initializer_range = alphas_initializer_range
|
266 |
+
self.alpha_type = alpha_type
|
267 |
+
self.rms_norm_eps = rms_norm_eps
|
268 |
+
self.use_cache = use_cache
|
269 |
+
self.rope_theta = rope_theta
|
270 |
+
|
271 |
+
self.cross_layer_interval = cross_layer_interval
|
272 |
+
self.qk_layer_norms = qk_layer_norms
|
273 |
+
self.freeze_vision_layers = freeze_vision_layers
|
274 |
+
|
275 |
+
self.freeze_text_layers = freeze_text_layers
|
276 |
+
self.freeze_text_module_exceptions = freeze_text_module_exceptions
|
277 |
+
self.freeze_vision_module_exceptions = freeze_vision_module_exceptions
|
278 |
+
self.freeze_lm_head = freeze_lm_head
|
279 |
+
|
280 |
+
self.use_resampler = use_resampler
|
281 |
+
self._flash_attn_2_enabled = _flash_attn_2_enabled
|
282 |
+
self.attention_dropout = attention_dropout
|
283 |
+
|
284 |
+
if perceiver_config is None:
|
285 |
+
self.perceiver_config = VMistralPerceiverConfig()
|
286 |
+
elif isinstance(perceiver_config, dict):
|
287 |
+
self.perceiver_config = VMistralPerceiverConfig(**perceiver_config)
|
288 |
+
elif isinstance(perceiver_config, VMistralPerceiverConfig):
|
289 |
+
self.perceiver_config = perceiver_config
|
290 |
+
|
291 |
+
if vision_config is None:
|
292 |
+
self.vision_config = VMistralVisionConfig()
|
293 |
+
elif isinstance(vision_config, dict):
|
294 |
+
self.vision_config = VMistralVisionConfig(**vision_config)
|
295 |
+
elif isinstance(vision_config, VMistralVisionConfig):
|
296 |
+
self.vision_config = vision_config
|
297 |
+
|
298 |
+
super().__init__(
|
299 |
+
pad_token_id=pad_token_id,
|
300 |
+
bos_token_id=bos_token_id,
|
301 |
+
eos_token_id=eos_token_id,
|
302 |
+
tie_word_embeddings=tie_word_embeddings,
|
303 |
+
**kwargs,
|
304 |
+
)
|
305 |
+
|
306 |
+
# IMPORTANT: Do not do any __init__ args-based checks in the constructor, since
|
307 |
+
# PretrainedConfig.from_dict first instantiates the class with the config dict and only then
|
308 |
+
# updates the config object with `kwargs` from from_pretrained, so during the instantiation
|
309 |
+
# of this object many attributes have default values and haven't yet been overridden.
|
310 |
+
# Do any required checks inside `from_pretrained` once the superclass' `from_pretrained` was run.
|
modeling_img2html.py
ADDED
@@ -0,0 +1,1772 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 Mistral AI and the HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
5 |
+
# and OPT implementations in this library. It has been modified from its
|
6 |
+
# original forms to accommodate minor architectural differences compared
|
7 |
+
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
8 |
+
#
|
9 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
10 |
+
# you may not use this file except in compliance with the License.
|
11 |
+
# You may obtain a copy of the License at
|
12 |
+
#
|
13 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
14 |
+
#
|
15 |
+
# Unless required by applicable law or agreed to in writing, software
|
16 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
17 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
18 |
+
# See the License for the specific language governing permissions and
|
19 |
+
# limitations under the License.
|
20 |
+
""" PyTorch Mistral model."""
|
21 |
+
from dataclasses import dataclass
|
22 |
+
import inspect
|
23 |
+
import math
|
24 |
+
import warnings
|
25 |
+
from typing import List, Optional, Tuple, Union
|
26 |
+
|
27 |
+
import torch
|
28 |
+
import torch.nn.functional as F
|
29 |
+
import torch.utils.checkpoint
|
30 |
+
from torch import nn
|
31 |
+
from torch.nn import CrossEntropyLoss
|
32 |
+
from transformers.activations import ACT2FN
|
33 |
+
from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask
|
34 |
+
from transformers.utils import (
|
35 |
+
add_start_docstrings,
|
36 |
+
add_start_docstrings_to_model_forward,
|
37 |
+
is_flash_attn_2_available,
|
38 |
+
replace_return_docstrings,
|
39 |
+
)
|
40 |
+
|
41 |
+
from einops import rearrange, repeat
|
42 |
+
from transformers import PreTrainedModel
|
43 |
+
from transformers.utils import logging
|
44 |
+
from transformers.modeling_outputs import ModelOutput
|
45 |
+
|
46 |
+
from .configuration_img2html import VMistralConfig
|
47 |
+
from .vision import SiglipVisionModel
|
48 |
+
|
49 |
+
|
50 |
+
if is_flash_attn_2_available():
|
51 |
+
from flash_attn import flash_attn_func, flash_attn_varlen_func
|
52 |
+
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
|
53 |
+
|
54 |
+
_flash_supports_window_size = "window_size" in list(inspect.signature(flash_attn_func).parameters)
|
55 |
+
|
56 |
+
logger = logging.get_logger(__name__)
|
57 |
+
|
58 |
+
_CONFIG_FOR_DOC = "VMistralConfig"
|
59 |
+
|
60 |
+
IMG2HTML_PRETRAINED_MODEL_ARCHIVE_LIST = [
|
61 |
+
"HuggingFaceM4/Img2HTML"
|
62 |
+
]
|
63 |
+
|
64 |
+
@dataclass
|
65 |
+
class Img2HTMLBaseModelOutputWithPast(ModelOutput):
|
66 |
+
"""
|
67 |
+
Base class for Img2HTML model's outputs that may also contain a past key/values (to speed up sequential decoding).
|
68 |
+
|
69 |
+
Args:
|
70 |
+
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
71 |
+
Sequence of hidden-states at the output of the last layer of the model.
|
72 |
+
|
73 |
+
If `past_key_values` is used only the last hidden-state of the sequences of shape `(batch_size, 1,
|
74 |
+
hidden_size)` is output.
|
75 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
76 |
+
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
77 |
+
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and optionally if
|
78 |
+
`config.is_encoder_decoder=True` 2 additional tensors of shape `(batch_size, num_heads,
|
79 |
+
encoder_sequence_length, embed_size_per_head)`.
|
80 |
+
|
81 |
+
Contains pre-computed hidden-states (key and values in the self-attention blocks and optionally if
|
82 |
+
`config.is_encoder_decoder=True` in the cross-attention blocks) that can be used (see `past_key_values`
|
83 |
+
input) to speed up sequential decoding.
|
84 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
85 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
86 |
+
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
87 |
+
|
88 |
+
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
89 |
+
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
90 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
91 |
+
sequence_length)`.
|
92 |
+
|
93 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
94 |
+
heads.
|
95 |
+
image_hidden_states (`tuple(torch.FloatTensor)`, *optional*):
|
96 |
+
Tuple of `torch.FloatTensor` (one for the output of the image embeddings, `(batch_size, num_images,
|
97 |
+
sequence_length, hidden_size)`.
|
98 |
+
|
99 |
+
image_hidden_states of the model produced by the vision encoder, and optionally by the perceiver
|
100 |
+
"""
|
101 |
+
|
102 |
+
last_hidden_state: torch.FloatTensor = None
|
103 |
+
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
|
104 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
105 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
106 |
+
image_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
107 |
+
|
108 |
+
|
109 |
+
@dataclass
|
110 |
+
class Img2HTMLCausalLMOutputWithPast(ModelOutput):
|
111 |
+
"""
|
112 |
+
Base class for Idefics causal language model (or autoregressive) outputs.
|
113 |
+
|
114 |
+
Args:
|
115 |
+
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
|
116 |
+
Language modeling loss (for next-token prediction).
|
117 |
+
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
|
118 |
+
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
119 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
120 |
+
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
121 |
+
`(batch_size, num_heads, sequence_length, embed_size_per_head)`)
|
122 |
+
|
123 |
+
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
|
124 |
+
`past_key_values` input) to speed up sequential decoding.
|
125 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
126 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
127 |
+
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
128 |
+
|
129 |
+
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
130 |
+
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
131 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
132 |
+
sequence_length)`.
|
133 |
+
|
134 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
135 |
+
heads.
|
136 |
+
image_hidden_states (`tuple(torch.FloatTensor)`, *optional*):
|
137 |
+
Tuple of `torch.FloatTensor` (one for the output of the image embeddings, `(batch_size, num_images,
|
138 |
+
sequence_length, hidden_size)`.
|
139 |
+
|
140 |
+
image_hidden_states of the model produced by the vision encoder, and optionally by the perceiver
|
141 |
+
"""
|
142 |
+
|
143 |
+
loss: Optional[torch.FloatTensor] = None
|
144 |
+
logits: torch.FloatTensor = None
|
145 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None
|
146 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
147 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
148 |
+
image_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
149 |
+
|
150 |
+
|
151 |
+
def expand_inputs_for_generation(
|
152 |
+
input_ids,
|
153 |
+
expand_size=1,
|
154 |
+
is_encoder_decoder=False,
|
155 |
+
attention_mask=None,
|
156 |
+
encoder_outputs=None,
|
157 |
+
**model_kwargs,
|
158 |
+
):
|
159 |
+
expanded_return_idx = (
|
160 |
+
torch.arange(input_ids.shape[0]).view(-1, 1).repeat(1, expand_size).view(-1).to(input_ids.device)
|
161 |
+
)
|
162 |
+
input_ids = input_ids.index_select(0, expanded_return_idx)
|
163 |
+
model_kwargs["pixel_values"] = model_kwargs.get("pixel_values", None)
|
164 |
+
model_kwargs["image_hidden_states"] = model_kwargs.get("image_hidden_states", None)
|
165 |
+
model_kwargs["image_attention_mask"] = model_kwargs.get("image_attention_mask", None)
|
166 |
+
|
167 |
+
if "token_type_ids" in model_kwargs:
|
168 |
+
token_type_ids = model_kwargs["token_type_ids"]
|
169 |
+
model_kwargs["token_type_ids"] = token_type_ids.index_select(0, expanded_return_idx)
|
170 |
+
|
171 |
+
if attention_mask is not None:
|
172 |
+
model_kwargs["attention_mask"] = attention_mask.index_select(0, expanded_return_idx)
|
173 |
+
|
174 |
+
if model_kwargs["image_attention_mask"] is not None:
|
175 |
+
model_kwargs["image_attention_mask"] = model_kwargs["image_attention_mask"].index_select(
|
176 |
+
0, expanded_return_idx
|
177 |
+
)
|
178 |
+
|
179 |
+
if model_kwargs["pixel_values"] is not None:
|
180 |
+
model_kwargs["pixel_values"] = model_kwargs["pixel_values"].index_select(0, expanded_return_idx)
|
181 |
+
|
182 |
+
elif model_kwargs["image_hidden_states"] is not None:
|
183 |
+
model_kwargs["image_hidden_states"] = model_kwargs["image_hidden_states"].index_select(
|
184 |
+
0, expanded_return_idx
|
185 |
+
)
|
186 |
+
|
187 |
+
return input_ids, model_kwargs
|
188 |
+
|
189 |
+
|
190 |
+
def update_model_kwargs_for_generation(outputs, model_kwargs):
|
191 |
+
# must have this key set to at least None
|
192 |
+
if "past_key_values" in outputs:
|
193 |
+
model_kwargs["past_key_values"] = outputs.past_key_values
|
194 |
+
else:
|
195 |
+
model_kwargs["past_key_values"] = None
|
196 |
+
|
197 |
+
# update token_type_ids with last value
|
198 |
+
if "token_type_ids" in model_kwargs:
|
199 |
+
token_type_ids = model_kwargs["token_type_ids"]
|
200 |
+
model_kwargs["token_type_ids"] = torch.cat([token_type_ids, token_type_ids[:, -1].unsqueeze(-1)], dim=-1)
|
201 |
+
|
202 |
+
# update attention masks
|
203 |
+
if "attention_mask" in model_kwargs:
|
204 |
+
attention_mask = model_kwargs["attention_mask"]
|
205 |
+
model_kwargs["attention_mask"] = torch.cat(
|
206 |
+
[attention_mask, attention_mask.new_ones((attention_mask.shape[0], 1))], dim=-1
|
207 |
+
)
|
208 |
+
if "image_attention_mask" in model_kwargs:
|
209 |
+
image_attention_mask = model_kwargs["image_attention_mask"]
|
210 |
+
last_mask = image_attention_mask[:, -1, :].unsqueeze(1)
|
211 |
+
model_kwargs["image_attention_mask"] = last_mask
|
212 |
+
|
213 |
+
# Get the precomputed image_hidden_states
|
214 |
+
model_kwargs["image_hidden_states"] = outputs.image_hidden_states
|
215 |
+
|
216 |
+
return model_kwargs
|
217 |
+
|
218 |
+
|
219 |
+
def prepare_inputs_for_generation(input_ids, past_key_values=None, **kwargs):
|
220 |
+
token_type_ids = kwargs.get("token_type_ids", None)
|
221 |
+
# only last token for inputs_ids if past is defined in kwargs
|
222 |
+
if past_key_values:
|
223 |
+
input_ids = input_ids[:, -1].unsqueeze(-1)
|
224 |
+
if token_type_ids is not None:
|
225 |
+
token_type_ids = token_type_ids[:, -1].unsqueeze(-1)
|
226 |
+
|
227 |
+
attention_mask = kwargs.get("attention_mask", None)
|
228 |
+
position_ids = kwargs.get("position_ids", None)
|
229 |
+
|
230 |
+
if attention_mask is not None and position_ids is None:
|
231 |
+
# create position_ids on the fly for batch generation
|
232 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
233 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
234 |
+
if past_key_values:
|
235 |
+
position_ids = position_ids[:, -1].unsqueeze(-1)
|
236 |
+
|
237 |
+
pixel_values = kwargs.get("pixel_values", None)
|
238 |
+
image_hidden_states = kwargs.get("image_hidden_states", None)
|
239 |
+
image_attention_mask = kwargs.get("image_attention_mask", None)
|
240 |
+
|
241 |
+
return {
|
242 |
+
"input_ids": input_ids,
|
243 |
+
"past_key_values": past_key_values,
|
244 |
+
"use_cache": kwargs.get("use_cache"),
|
245 |
+
"position_ids": position_ids,
|
246 |
+
"attention_mask": attention_mask,
|
247 |
+
"token_type_ids": token_type_ids,
|
248 |
+
"pixel_values": pixel_values,
|
249 |
+
"image_hidden_states": image_hidden_states,
|
250 |
+
"image_attention_mask": image_attention_mask,
|
251 |
+
}
|
252 |
+
|
253 |
+
|
254 |
+
def freeze_model(model, module_exceptions=[]):
|
255 |
+
mapping = {
|
256 |
+
"LayerNorm": nn.LayerNorm,
|
257 |
+
"Linear": nn.Linear,
|
258 |
+
"Embedding": nn.Embedding,
|
259 |
+
}
|
260 |
+
module_exceptions_mapped = [mapping[m] for m in module_exceptions]
|
261 |
+
for module in model.modules():
|
262 |
+
if module_exceptions and any([isinstance(module, t) for t in module_exceptions_mapped]):
|
263 |
+
module.requires_grad_(True) # Explicitly setting it to true to avoid any mistakes
|
264 |
+
else:
|
265 |
+
module.requires_grad_(False)
|
266 |
+
return model
|
267 |
+
|
268 |
+
|
269 |
+
class DecoupledEmbedding(nn.Embedding):
|
270 |
+
# Derived from https://pytorch.org/docs/stable/_modules/torch/nn/modules/sparse.html#Embedding
|
271 |
+
"""
|
272 |
+
Implements a decoupling of parameters to allow freezing (or not) a subset of the embeddings.
|
273 |
+
In practise, the regular `weight` can be trained or frozen (i.e. `partially_freeze=True`), and if `num_additional_embeddings` > 0, then it will create `num_additional_embeddings` additional parameters that are always trained.
|
274 |
+
If `num_additional_embeddings=0`, then the module defaults back to the regular behavior of `nn.Embedding`.
|
275 |
+
"""
|
276 |
+
|
277 |
+
def __init__(
|
278 |
+
self,
|
279 |
+
num_embeddings,
|
280 |
+
num_additional_embeddings,
|
281 |
+
embedding_dim,
|
282 |
+
partially_freeze=False,
|
283 |
+
device=None,
|
284 |
+
dtype=None,
|
285 |
+
padding_idx=None,
|
286 |
+
**kwargs,
|
287 |
+
) -> None:
|
288 |
+
"""
|
289 |
+
num_additional_embeddings: int. Number of additional embeddings. Only useful when you `partially_freeze=True`.
|
290 |
+
partially_freeze: bool. If True, the regular `weight` will be frozen. `additional_weight` is never frozen.
|
291 |
+
|
292 |
+
Note: there are a lot of other parameters to initialize a standard `nn.Embedding` such as `padding_idx`, `max_norm` or `norm_type`. We are not supporting these.
|
293 |
+
"""
|
294 |
+
if padding_idx is not None and padding_idx > num_embeddings:
|
295 |
+
raise ValueError(f"padding_idx must be within num_embeddings. Got {padding_idx} and {num_embeddings}")
|
296 |
+
super().__init__(
|
297 |
+
num_embeddings=num_embeddings,
|
298 |
+
embedding_dim=embedding_dim,
|
299 |
+
device=device,
|
300 |
+
dtype=dtype,
|
301 |
+
padding_idx=padding_idx,
|
302 |
+
**kwargs,
|
303 |
+
)
|
304 |
+
self.num_embeddings = num_embeddings
|
305 |
+
self.padding_idx = padding_idx
|
306 |
+
self.num_additional_embeddings = num_additional_embeddings
|
307 |
+
self.partially_freeze = partially_freeze
|
308 |
+
|
309 |
+
if partially_freeze:
|
310 |
+
self.weight.requires_grad_(False)
|
311 |
+
|
312 |
+
if self.num_additional_embeddings > 0:
|
313 |
+
self.additional_embedding = nn.Embedding(
|
314 |
+
num_embeddings=self.num_additional_embeddings,
|
315 |
+
embedding_dim=embedding_dim,
|
316 |
+
device=device,
|
317 |
+
dtype=dtype,
|
318 |
+
)
|
319 |
+
|
320 |
+
def forward(self, input_ids):
|
321 |
+
"""
|
322 |
+
we have 2 embeddings, with different indices - one pretrained self.weight and another
|
323 |
+
self.additional_embedding.weight that is being trained.
|
324 |
+
|
325 |
+
in order to make a lookup of the input ids, we:
|
326 |
+
1. find out the indices of the entries belonging to the 2nd embedding
|
327 |
+
2. extract those values while subtracting the size of the first embedding (num_embeddings),
|
328 |
+
since the 2nd embedding starts from 0 and not num_embeddings
|
329 |
+
3. perform the 2nd embedding lookup
|
330 |
+
4. now we handle the 1st embedding, we overwrite indices belonging to the 2nd embedding with a padding index
|
331 |
+
5. perform the 1st embedding lookup
|
332 |
+
6. now we overwrite the values in the 1st embedding lookup with the values of the 2nd embedding lookup
|
333 |
+
|
334 |
+
note: for the 1st embedding lookup we could have looked up only the low indices and not do
|
335 |
+
the padding, but then we have to create a new tensor and populate it with 2 tensors that are
|
336 |
+
spread out across various indices - i.e. not a simple concat - I haven't benchmarked the
|
337 |
+
complex case if it's any faster, given that seqlens are usually relatively short it's
|
338 |
+
probably not faster or if faster not by much - but might be a good idea to measure.
|
339 |
+
|
340 |
+
"""
|
341 |
+
if self.num_additional_embeddings == 0:
|
342 |
+
return self.additional_embedding(input_ids)
|
343 |
+
|
344 |
+
# Clone so that we don't modify the original input_ids later on
|
345 |
+
input_ids = input_ids.clone()
|
346 |
+
additional_vocab_indices = torch.where(input_ids >= self.num_embeddings)
|
347 |
+
input_ids_additional_vocab = input_ids[additional_vocab_indices]
|
348 |
+
additional_embeddings = self.additional_embedding(input_ids_additional_vocab - self.num_embeddings)
|
349 |
+
|
350 |
+
# for successful lookup replace input_ids with 0, the results of these will be discarded anyway
|
351 |
+
input_ids[additional_vocab_indices] = 0
|
352 |
+
full_vector = F.embedding(input_ids, self.weight)
|
353 |
+
|
354 |
+
# overwrite the records with high indices
|
355 |
+
full_vector[additional_vocab_indices] = additional_embeddings
|
356 |
+
|
357 |
+
return full_vector
|
358 |
+
|
359 |
+
def extra_repr(self) -> str:
|
360 |
+
return "num_embeddings={}, num_additional_embeddings={}, embedding_dim={}, partially_freeze={}".format(
|
361 |
+
self.num_embeddings,
|
362 |
+
self.num_additional_embeddings,
|
363 |
+
self.embedding_dim,
|
364 |
+
self.partially_freeze,
|
365 |
+
)
|
366 |
+
|
367 |
+
class DecoupledLinear(nn.Linear):
|
368 |
+
# Derived from https://pytorch.org/docs/stable/_modules/torch/nn/modules/linear.html#Linear
|
369 |
+
"""
|
370 |
+
Implements a decoupling of parameters to allow freezing (or not) a subset of the parameters.
|
371 |
+
In practise, the regular `weight` can be trained or frozen (i.e. `partially_freeze=True`), and if `out_additional_features` > 0, then it will create `out_additional_features * in_features` additional parameters that are always trained.
|
372 |
+
If `out_additional_features=0`, then the module defaults back to the regular behavior of `nn.Linear`.
|
373 |
+
"""
|
374 |
+
|
375 |
+
def __init__(
|
376 |
+
self,
|
377 |
+
in_features: int,
|
378 |
+
out_features: int,
|
379 |
+
out_additional_features: int = 0,
|
380 |
+
bias: bool = True,
|
381 |
+
partially_freeze: bool = True,
|
382 |
+
device=None,
|
383 |
+
dtype=None,
|
384 |
+
) -> None:
|
385 |
+
"""
|
386 |
+
out_additional_features: int. Number of additional trainable dimensions. Only makes sense when `partially_freeze=True`.
|
387 |
+
partially_freeze: bool. If True, the regular `weight` will be frozen and extra parameters (if any) will be trainable. If False, default to the regular behavior of nn.Linear.
|
388 |
+
"""
|
389 |
+
super().__init__(in_features, out_features, bias, device, dtype)
|
390 |
+
self.out_additional_features = out_additional_features
|
391 |
+
self.partially_freeze = partially_freeze
|
392 |
+
|
393 |
+
self.in_features = in_features
|
394 |
+
self.out_features = out_features
|
395 |
+
|
396 |
+
if partially_freeze:
|
397 |
+
self.weight.requires_grad_(False)
|
398 |
+
if bias:
|
399 |
+
self.bias.requires_grad_(False)
|
400 |
+
|
401 |
+
if out_additional_features > 0:
|
402 |
+
self.additional_fc = nn.Linear(
|
403 |
+
in_features=in_features,
|
404 |
+
out_features=out_additional_features,
|
405 |
+
bias=bias,
|
406 |
+
device=device,
|
407 |
+
dtype=dtype,
|
408 |
+
)
|
409 |
+
|
410 |
+
def forward(self, input: torch.Tensor) -> torch.Tensor:
|
411 |
+
output = F.linear(input, self.weight, self.bias)
|
412 |
+
|
413 |
+
if self.out_additional_features > 0:
|
414 |
+
additional_features = self.additional_fc(input)
|
415 |
+
output = torch.cat((output, additional_features), -1)
|
416 |
+
|
417 |
+
return output
|
418 |
+
|
419 |
+
def extra_repr(self) -> str:
|
420 |
+
"""Overwriting `nn.Linear.extra_repr` to include new parameters."""
|
421 |
+
return "in_features={}, out_features={}, out_additional_features={}, bias={}, partially_freeze={}".format(
|
422 |
+
self.in_features,
|
423 |
+
self.out_features,
|
424 |
+
self.out_additional_features,
|
425 |
+
self.bias is not None,
|
426 |
+
self.partially_freeze,
|
427 |
+
)
|
428 |
+
|
429 |
+
class SwiGLU(nn.Module):
|
430 |
+
def __init__(self, embed_dim) -> None:
|
431 |
+
super().__init__()
|
432 |
+
self.fc1 = nn.Linear(embed_dim, embed_dim, bias=False)
|
433 |
+
self.fc2 = nn.Linear(embed_dim, embed_dim, bias=False)
|
434 |
+
|
435 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
436 |
+
x_1 = self.fc1(x)
|
437 |
+
x_1 = torch.mul(x_1, torch.sigmoid(x_1))
|
438 |
+
x_2 = self.fc2(x)
|
439 |
+
x = torch.mul(x_1, x_2)
|
440 |
+
return x
|
441 |
+
|
442 |
+
|
443 |
+
class ModalityProjection(nn.Module):
|
444 |
+
def __init__(self, embed_dim_in, embed_dim_out) -> None:
|
445 |
+
super().__init__()
|
446 |
+
self.fc1 = nn.Linear(embed_dim_in, embed_dim_out, bias=False)
|
447 |
+
self.act = SwiGLU(embed_dim_out)
|
448 |
+
self.fc2 = nn.Linear(embed_dim_out, embed_dim_out, bias=False)
|
449 |
+
|
450 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
451 |
+
x = self.fc1(x)
|
452 |
+
x = self.act(x)
|
453 |
+
x = self.fc2(x)
|
454 |
+
return x
|
455 |
+
|
456 |
+
|
457 |
+
class PerceiverResampler(nn.Module):
|
458 |
+
def __init__(
|
459 |
+
self, embed_dim: int, depth: int, n_heads: int, head_dim: int, n_latents: int, qk_layer_norms: bool
|
460 |
+
) -> None:
|
461 |
+
"""
|
462 |
+
Instantiates a Perceiver Resampler that operates over a sequence of embeddings (say from a ResNet or ViT or
|
463 |
+
MAE) of a given dimension, performs `depth` blocks of cross-attention with a fixed `n_latents` inputs, then
|
464 |
+
returns a Tensor of shape [bsz, n_latents, embed_dim].
|
465 |
+
:param embed_dim: Dimensionality of embeddings being fed to the Perceiver Resampler (also dimensionality of
|
466 |
+
latent embeddings *returned* by the Perceiver Resampler. Could be e.g., VIT embed_dim, ResNet
|
467 |
+
pool dim, and so on.
|
468 |
+
:param depth: Depth of the Perceiver Resampler (Transformer w/ cross attention). Should be shallow (< 3).
|
469 |
+
:param n_heads: Number of heads in each Transformer block (for multi-headed self-attention).
|
470 |
+
:param head_dim: Dimensionality of each head projection in the Transformer block.
|
471 |
+
:param n_latents: Number of latent embeddings to resample ("compress") the input sequence to (usually < 128).
|
472 |
+
"""
|
473 |
+
super().__init__()
|
474 |
+
self.embed_dim, self.n_heads, self.head_dim, self.n_latents = embed_dim, n_heads, head_dim, n_latents
|
475 |
+
self.qk_layer_norms = qk_layer_norms
|
476 |
+
|
477 |
+
# Create Latents for Perceiver
|
478 |
+
self.latents = nn.Parameter(torch.ones(self.n_latents, self.embed_dim))
|
479 |
+
|
480 |
+
self.intermediate_dim = self.embed_dim * 4
|
481 |
+
# Create Transformer Blocks
|
482 |
+
self.blocks = nn.ModuleList(
|
483 |
+
[
|
484 |
+
nn.ModuleList(
|
485 |
+
[
|
486 |
+
PerceiverAttention(self.embed_dim, self.n_heads, self.head_dim, self.qk_layer_norms),
|
487 |
+
MLP(self.embed_dim, self.intermediate_dim),
|
488 |
+
]
|
489 |
+
)
|
490 |
+
for _ in range(depth)
|
491 |
+
]
|
492 |
+
)
|
493 |
+
self.layer_norm = nn.LayerNorm(self.embed_dim)
|
494 |
+
|
495 |
+
def forward(self, context: torch.Tensor) -> torch.Tensor:
|
496 |
+
"""Resample arbitrary length context & *compress* down to self.n_latents latent embeddings"""
|
497 |
+
latents = repeat(self.latents, "seq embed -> bsz seq embed", bsz=context.shape[0])
|
498 |
+
|
499 |
+
# Feed through Perceiver Attention blocks...
|
500 |
+
for attn, ff in self.blocks:
|
501 |
+
latents = attn(context, latents) + latents
|
502 |
+
latents = ff(latents) + latents
|
503 |
+
|
504 |
+
return self.layer_norm(latents)
|
505 |
+
|
506 |
+
|
507 |
+
class PerceiverAttention(nn.Module):
|
508 |
+
def __init__(self, embed_dim: int, n_heads: int, head_dim: int, qk_layer_norms: bool) -> None:
|
509 |
+
"""Perceiver Cross-Attention Module --> let long-form inputs be `context`, resampled embeddings be `latents`"""
|
510 |
+
super().__init__()
|
511 |
+
self.embed_dim, self.n_heads, self.head_dim = embed_dim, n_heads, head_dim
|
512 |
+
self.qk_layer_norms = qk_layer_norms
|
513 |
+
# Normalization & Scaling
|
514 |
+
self.context_layer_norm = nn.LayerNorm(self.embed_dim)
|
515 |
+
self.latents_layer_norm = nn.LayerNorm(self.embed_dim)
|
516 |
+
if self.qk_layer_norms:
|
517 |
+
self.q_layer_norm = nn.LayerNorm(self.head_dim)
|
518 |
+
self.k_layer_norm = nn.LayerNorm(self.head_dim)
|
519 |
+
|
520 |
+
self.qk_scale = self.head_dim**-0.5
|
521 |
+
|
522 |
+
# Q, K, V Projection (no bias -- detail from Perceiver/Flamingo Papers).
|
523 |
+
self.q_proj = nn.Linear(self.embed_dim, self.n_heads * self.head_dim, bias=False)
|
524 |
+
self.k_proj = nn.Linear(self.embed_dim, self.n_heads * self.head_dim, bias=False)
|
525 |
+
self.v_proj = nn.Linear(self.embed_dim, self.n_heads * self.head_dim, bias=False)
|
526 |
+
|
527 |
+
self.output_proj = nn.Linear(self.n_heads * self.head_dim, self.embed_dim, bias=False)
|
528 |
+
|
529 |
+
def forward(self, context: torch.Tensor, latents: torch.Tensor) -> torch.Tensor:
|
530 |
+
"""
|
531 |
+
Runs Perceiver Self-Attention, with special (context, latents) appended along the `seq` dimension!
|
532 |
+
:param context: Tensor of shape [bsz, seq, embed_dim] representing long-form context to resample.
|
533 |
+
:param latents: Tensor of shape [bsz, n_latents, embed_dim] representing fixed length latents to compress to.
|
534 |
+
:return: Tensor of shape [bsz, n_latents, embed_dim] representing attention over latents w/ cross from context.
|
535 |
+
"""
|
536 |
+
context = self.context_layer_norm(context)
|
537 |
+
latents = self.latents_layer_norm(latents)
|
538 |
+
|
539 |
+
# Query, Key, Value Projections --> Note that in Flamingo, latents are *concatenated* with context prior to attn!
|
540 |
+
# Note: This results in queries w/ `seq = n_latents`, and keys, values with `seq = len(context) + n_latents`
|
541 |
+
q = self.q_proj(latents)
|
542 |
+
k = self.k_proj(torch.cat([context, latents], dim=-2))
|
543 |
+
v = self.v_proj(torch.cat([context, latents], dim=-2))
|
544 |
+
|
545 |
+
# Multiheaded Self-Attention w/ stable softmax (subtract per-row max -- `amax` -- before softmax call)
|
546 |
+
# =>> `attn` should be a 2D matrix of shape [n_latents x (context + n_latents)]
|
547 |
+
q, k, v = [rearrange(x, "bsz seq (heads embed) -> bsz heads seq embed", heads=self.n_heads) for x in (q, k, v)]
|
548 |
+
if self.qk_layer_norms:
|
549 |
+
q = self.q_layer_norm(q)
|
550 |
+
k = self.k_layer_norm(k)
|
551 |
+
|
552 |
+
scores = torch.einsum("... i d, ... j d -> ... i j", q * self.qk_scale, k)
|
553 |
+
stabilized_scores = scores - (scores.amax(dim=-1, keepdim=True).detach())
|
554 |
+
attn = stabilized_scores.softmax(dim=-1)
|
555 |
+
|
556 |
+
# Attend & project back to output...
|
557 |
+
resampled = torch.einsum("... i j, ... j d -> ... i d", attn, v)
|
558 |
+
return self.output_proj(
|
559 |
+
rearrange(resampled, "bsz heads seq embed -> bsz seq (heads embed)", heads=self.n_heads)
|
560 |
+
)
|
561 |
+
|
562 |
+
|
563 |
+
class MLP(nn.Module):
|
564 |
+
def __init__(self, embed_dim, intermediate_size):
|
565 |
+
"""Simple MLP block with intermediate_size and embedding size"""
|
566 |
+
super().__init__()
|
567 |
+
self.embed_dim = embed_dim
|
568 |
+
self.ln = nn.LayerNorm(self.embed_dim)
|
569 |
+
self.fc = nn.Linear(self.embed_dim, intermediate_size, bias=False)
|
570 |
+
self.act = nn.ReLU()
|
571 |
+
self.c_proj = nn.Linear(intermediate_size, self.embed_dim, bias=False)
|
572 |
+
|
573 |
+
def forward(self, hidden_states: Optional[Tuple[torch.FloatTensor]]) -> torch.FloatTensor:
|
574 |
+
hidden_states = self.ln(hidden_states)
|
575 |
+
hidden_states = self.fc(hidden_states)
|
576 |
+
hidden_states = self.act(hidden_states)
|
577 |
+
hidden_states = self.c_proj(hidden_states)
|
578 |
+
|
579 |
+
return hidden_states
|
580 |
+
|
581 |
+
|
582 |
+
# Copied from transformers.models.llama.modeling_llama._get_unpad_data
|
583 |
+
def _get_unpad_data(attention_mask):
|
584 |
+
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
585 |
+
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
586 |
+
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
587 |
+
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0))
|
588 |
+
return (
|
589 |
+
indices,
|
590 |
+
cu_seqlens,
|
591 |
+
max_seqlen_in_batch,
|
592 |
+
)
|
593 |
+
|
594 |
+
|
595 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->Mistral
|
596 |
+
class MistralRMSNorm(nn.Module):
|
597 |
+
def __init__(self, hidden_size, eps=1e-6):
|
598 |
+
"""
|
599 |
+
MistralRMSNorm is equivalent to T5LayerNorm
|
600 |
+
"""
|
601 |
+
super().__init__()
|
602 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
603 |
+
self.variance_epsilon = eps
|
604 |
+
|
605 |
+
def forward(self, hidden_states):
|
606 |
+
input_dtype = hidden_states.dtype
|
607 |
+
hidden_states = hidden_states.to(torch.float32)
|
608 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
609 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
610 |
+
return self.weight * hidden_states.to(input_dtype)
|
611 |
+
|
612 |
+
|
613 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaRotaryEmbedding with Llama->Mistral
|
614 |
+
class MistralRotaryEmbedding(nn.Module):
|
615 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
|
616 |
+
super().__init__()
|
617 |
+
|
618 |
+
self.dim = dim
|
619 |
+
self.max_position_embeddings = max_position_embeddings
|
620 |
+
self.base = base
|
621 |
+
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
|
622 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
623 |
+
|
624 |
+
# Build here to make `torch.jit.trace` work.
|
625 |
+
self._set_cos_sin_cache(
|
626 |
+
seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
|
627 |
+
)
|
628 |
+
|
629 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
630 |
+
self.max_seq_len_cached = seq_len
|
631 |
+
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
|
632 |
+
|
633 |
+
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
634 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
635 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
636 |
+
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
|
637 |
+
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
|
638 |
+
|
639 |
+
def forward(self, x, seq_len=None):
|
640 |
+
# x: [bs, num_attention_heads, seq_len, head_size]
|
641 |
+
if seq_len > self.max_seq_len_cached:
|
642 |
+
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
|
643 |
+
|
644 |
+
return (
|
645 |
+
self.cos_cached[:seq_len].to(dtype=x.dtype),
|
646 |
+
self.sin_cached[:seq_len].to(dtype=x.dtype),
|
647 |
+
)
|
648 |
+
|
649 |
+
|
650 |
+
# Copied from transformers.models.llama.modeling_llama.rotate_half
|
651 |
+
def rotate_half(x):
|
652 |
+
"""Rotates half the hidden dims of the input."""
|
653 |
+
x1 = x[..., : x.shape[-1] // 2]
|
654 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
655 |
+
return torch.cat((-x2, x1), dim=-1)
|
656 |
+
|
657 |
+
|
658 |
+
# Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb
|
659 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids):
|
660 |
+
cos = cos[position_ids].unsqueeze(1) # [seq_len, dim] -> [batch_size, 1, seq_len, head_dim]
|
661 |
+
sin = sin[position_ids].unsqueeze(1)
|
662 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
663 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
664 |
+
return q_embed, k_embed
|
665 |
+
|
666 |
+
|
667 |
+
class MistralMLP(nn.Module):
|
668 |
+
def __init__(self, config):
|
669 |
+
super().__init__()
|
670 |
+
self.config = config
|
671 |
+
self.hidden_size = config.hidden_size
|
672 |
+
self.intermediate_size = config.intermediate_size
|
673 |
+
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
674 |
+
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
675 |
+
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
|
676 |
+
self.act_fn = ACT2FN[config.hidden_act]
|
677 |
+
|
678 |
+
def forward(self, x):
|
679 |
+
return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
|
680 |
+
|
681 |
+
|
682 |
+
# Copied from transformers.models.llama.modeling_llama.repeat_kv
|
683 |
+
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
684 |
+
"""
|
685 |
+
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
686 |
+
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
687 |
+
"""
|
688 |
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
689 |
+
if n_rep == 1:
|
690 |
+
return hidden_states
|
691 |
+
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
692 |
+
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
693 |
+
|
694 |
+
|
695 |
+
class MistralAttention(nn.Module):
|
696 |
+
"""
|
697 |
+
Multi-headed attention from 'Attention Is All You Need' paper. Modified to use sliding window attention: Longformer
|
698 |
+
and "Generating Long Sequences with Sparse Transformers".
|
699 |
+
"""
|
700 |
+
|
701 |
+
def __init__(self, config: VMistralConfig, qk_layer_norms: bool = False):
|
702 |
+
super().__init__()
|
703 |
+
self.config = config
|
704 |
+
self.hidden_size = config.hidden_size
|
705 |
+
self.num_heads = config.num_attention_heads
|
706 |
+
self.head_dim = self.hidden_size // self.num_heads
|
707 |
+
self.num_key_value_heads = config.num_key_value_heads
|
708 |
+
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
709 |
+
self.max_position_embeddings = config.max_position_embeddings
|
710 |
+
self.rope_theta = config.rope_theta
|
711 |
+
self.is_causal = True
|
712 |
+
|
713 |
+
if (self.head_dim * self.num_heads) != self.hidden_size:
|
714 |
+
raise ValueError(
|
715 |
+
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
|
716 |
+
f" and `num_heads`: {self.num_heads})."
|
717 |
+
)
|
718 |
+
|
719 |
+
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
|
720 |
+
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
|
721 |
+
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
|
722 |
+
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
|
723 |
+
|
724 |
+
self.qk_layer_norms = qk_layer_norms
|
725 |
+
if self.qk_layer_norms:
|
726 |
+
self.q_layer_norm = MistralRMSNorm(self.head_dim, eps=config.rms_norm_eps)
|
727 |
+
self.k_layer_norm = MistralRMSNorm(self.head_dim, eps=config.rms_norm_eps)
|
728 |
+
|
729 |
+
self.rotary_emb = MistralRotaryEmbedding(
|
730 |
+
self.head_dim,
|
731 |
+
max_position_embeddings=self.max_position_embeddings,
|
732 |
+
base=self.rope_theta,
|
733 |
+
)
|
734 |
+
self.attention_dropout = config.attention_dropout
|
735 |
+
|
736 |
+
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
737 |
+
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
|
738 |
+
|
739 |
+
def forward(
|
740 |
+
self,
|
741 |
+
hidden_states: torch.Tensor,
|
742 |
+
key_value_states: Optional[torch.Tensor] = None,
|
743 |
+
attention_mask: Optional[torch.Tensor] = None,
|
744 |
+
position_ids: Optional[torch.LongTensor] = None,
|
745 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
746 |
+
output_attentions: bool = False,
|
747 |
+
use_cache: bool = False,
|
748 |
+
**kwargs,
|
749 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
750 |
+
if "padding_mask" in kwargs:
|
751 |
+
warnings.warn(
|
752 |
+
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use"
|
753 |
+
" `attention_mask` instead.`"
|
754 |
+
)
|
755 |
+
|
756 |
+
bsz, q_len, _ = hidden_states.size()
|
757 |
+
|
758 |
+
query_states = self.q_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
759 |
+
key_states = (
|
760 |
+
self.k_proj(hidden_states).view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
761 |
+
)
|
762 |
+
value_states = (
|
763 |
+
self.v_proj(hidden_states).view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
764 |
+
)
|
765 |
+
|
766 |
+
kv_seq_len = key_states.shape[-2]
|
767 |
+
if past_key_value is not None:
|
768 |
+
kv_seq_len += past_key_value[0].shape[-2]
|
769 |
+
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
770 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
771 |
+
|
772 |
+
if past_key_value is not None:
|
773 |
+
# reuse k, v, self_attention
|
774 |
+
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
775 |
+
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
776 |
+
|
777 |
+
past_key_value = (key_states, value_states) if use_cache else None
|
778 |
+
|
779 |
+
if self.qk_layer_norms:
|
780 |
+
query_states = self.q_layer_norm(query_states)
|
781 |
+
key_states = self.k_layer_norm(key_states)
|
782 |
+
|
783 |
+
# repeat k/v heads if n_kv_heads < n_heads
|
784 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
785 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
786 |
+
|
787 |
+
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
788 |
+
|
789 |
+
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
|
790 |
+
raise ValueError(
|
791 |
+
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
|
792 |
+
f" {attn_weights.size()}"
|
793 |
+
)
|
794 |
+
|
795 |
+
if attention_mask is not None:
|
796 |
+
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
797 |
+
raise ValueError(
|
798 |
+
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
|
799 |
+
)
|
800 |
+
|
801 |
+
attn_weights = attn_weights + attention_mask
|
802 |
+
|
803 |
+
# upcast attention to fp32
|
804 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
805 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
806 |
+
|
807 |
+
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
808 |
+
raise ValueError(
|
809 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
|
810 |
+
f" {attn_output.size()}"
|
811 |
+
)
|
812 |
+
|
813 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
814 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
815 |
+
|
816 |
+
attn_output = self.o_proj(attn_output)
|
817 |
+
|
818 |
+
if not output_attentions:
|
819 |
+
attn_weights = None
|
820 |
+
|
821 |
+
return attn_output, attn_weights, past_key_value
|
822 |
+
|
823 |
+
|
824 |
+
class MistralFlashAttention2(MistralAttention):
|
825 |
+
"""
|
826 |
+
Mistral flash attention module. This module inherits from `MistralAttention` as the weights of the module stays
|
827 |
+
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
|
828 |
+
flash attention and deal with padding tokens in case the input contains any of them.
|
829 |
+
"""
|
830 |
+
|
831 |
+
def forward(
|
832 |
+
self,
|
833 |
+
hidden_states: torch.Tensor,
|
834 |
+
attention_mask: Optional[torch.Tensor] = None,
|
835 |
+
position_ids: Optional[torch.LongTensor] = None,
|
836 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
837 |
+
output_attentions: bool = False,
|
838 |
+
use_cache: bool = False,
|
839 |
+
**kwargs,
|
840 |
+
):
|
841 |
+
if "padding_mask" in kwargs:
|
842 |
+
warnings.warn(
|
843 |
+
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use"
|
844 |
+
" `attention_mask` instead.`"
|
845 |
+
)
|
846 |
+
|
847 |
+
# overwrite attention_mask with padding_mask
|
848 |
+
attention_mask = kwargs.pop("padding_mask")
|
849 |
+
bsz, q_len, _ = hidden_states.size()
|
850 |
+
|
851 |
+
query_states = self.q_proj(hidden_states)
|
852 |
+
key_states = self.k_proj(hidden_states)
|
853 |
+
value_states = self.v_proj(hidden_states)
|
854 |
+
|
855 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
856 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
857 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
858 |
+
|
859 |
+
kv_seq_len = key_states.shape[-2]
|
860 |
+
if past_key_value is not None:
|
861 |
+
kv_seq_len += past_key_value[0].shape[-2]
|
862 |
+
|
863 |
+
# Because the input can be padded, the absolute sequence length depends on the max position id.
|
864 |
+
rotary_seq_len = max(kv_seq_len, position_ids[:, -1].max().item()) + 1
|
865 |
+
cos, sin = self.rotary_emb(value_states, seq_len=rotary_seq_len)
|
866 |
+
|
867 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
868 |
+
|
869 |
+
use_sliding_windows = (
|
870 |
+
_flash_supports_window_size
|
871 |
+
and hasattr(self.config, "sliding_window") is not None
|
872 |
+
and kv_seq_len > self.config.sliding_window
|
873 |
+
)
|
874 |
+
|
875 |
+
if not _flash_supports_window_size:
|
876 |
+
logger.warning_once(
|
877 |
+
"The current flash attention version does not support sliding window attention, for a more memory"
|
878 |
+
" efficient implementation make sure to upgrade flash-attn library."
|
879 |
+
)
|
880 |
+
|
881 |
+
if past_key_value is not None:
|
882 |
+
# Activate slicing cache only if the config has a value `sliding_windows` attribute
|
883 |
+
if hasattr(self.config, "sliding_window") and kv_seq_len > self.config.sliding_window:
|
884 |
+
slicing_tokens = kv_seq_len - self.config.sliding_window
|
885 |
+
|
886 |
+
past_key = past_key_value[0]
|
887 |
+
past_value = past_key_value[1]
|
888 |
+
|
889 |
+
past_key = past_key[:, :, slicing_tokens:, :].contiguous()
|
890 |
+
past_value = past_value[:, :, slicing_tokens:, :].contiguous()
|
891 |
+
|
892 |
+
if past_key.shape[-2] != self.config.sliding_window - 1:
|
893 |
+
raise ValueError(
|
894 |
+
"past key must have a shape of (`batch_size, num_heads, self.config.sliding_window-1,"
|
895 |
+
f" head_dim`), got {past_key.shape}"
|
896 |
+
)
|
897 |
+
|
898 |
+
past_key_value = (past_key, past_value)
|
899 |
+
|
900 |
+
if attention_mask is not None:
|
901 |
+
attention_mask = attention_mask[:, slicing_tokens:]
|
902 |
+
attention_mask = torch.cat([attention_mask, torch.ones_like(attention_mask[:, -1:])], dim=-1)
|
903 |
+
|
904 |
+
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
905 |
+
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
906 |
+
|
907 |
+
past_key_value = (key_states, value_states) if use_cache else None
|
908 |
+
|
909 |
+
# repeat k/v heads if n_kv_heads < n_heads
|
910 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
911 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
912 |
+
dropout_rate = 0.0 if not self.training else self.attention_dropout
|
913 |
+
|
914 |
+
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
|
915 |
+
# therefore the input hidden states gets silently casted in float32. Hence, we need
|
916 |
+
# cast them back in float16 just to be sure everything works as expected.
|
917 |
+
input_dtype = query_states.dtype
|
918 |
+
if input_dtype == torch.float32:
|
919 |
+
# Handle the case where the model is quantized
|
920 |
+
if hasattr(self.config, "_pre_quantization_dtype"):
|
921 |
+
target_dtype = self.config._pre_quantization_dtype
|
922 |
+
else:
|
923 |
+
target_dtype = self.q_proj.weight.dtype
|
924 |
+
|
925 |
+
logger.warning_once(
|
926 |
+
"The input hidden states seems to be silently casted in float32, this might be related to the fact"
|
927 |
+
" you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
|
928 |
+
f" {target_dtype}."
|
929 |
+
)
|
930 |
+
|
931 |
+
query_states = query_states.to(target_dtype)
|
932 |
+
key_states = key_states.to(target_dtype)
|
933 |
+
value_states = value_states.to(target_dtype)
|
934 |
+
|
935 |
+
# Reashape to the expected shape for Flash Attention
|
936 |
+
query_states = query_states.transpose(1, 2)
|
937 |
+
key_states = key_states.transpose(1, 2)
|
938 |
+
value_states = value_states.transpose(1, 2)
|
939 |
+
|
940 |
+
attn_output = self._flash_attention_forward(
|
941 |
+
query_states,
|
942 |
+
key_states,
|
943 |
+
value_states,
|
944 |
+
attention_mask,
|
945 |
+
q_len,
|
946 |
+
dropout=dropout_rate,
|
947 |
+
use_sliding_windows=use_sliding_windows,
|
948 |
+
)
|
949 |
+
|
950 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
|
951 |
+
attn_output = self.o_proj(attn_output)
|
952 |
+
|
953 |
+
if not output_attentions:
|
954 |
+
attn_weights = None
|
955 |
+
|
956 |
+
return attn_output, attn_weights, past_key_value
|
957 |
+
|
958 |
+
def _flash_attention_forward(
|
959 |
+
self,
|
960 |
+
query_states,
|
961 |
+
key_states,
|
962 |
+
value_states,
|
963 |
+
attention_mask,
|
964 |
+
query_length,
|
965 |
+
dropout=0.0,
|
966 |
+
softmax_scale=None,
|
967 |
+
use_sliding_windows=False,
|
968 |
+
):
|
969 |
+
"""
|
970 |
+
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
|
971 |
+
first unpad the input, then computes the attention scores and pad the final attention scores.
|
972 |
+
|
973 |
+
Args:
|
974 |
+
query_states (`torch.Tensor`):
|
975 |
+
Input query states to be passed to Flash Attention API
|
976 |
+
key_states (`torch.Tensor`):
|
977 |
+
Input key states to be passed to Flash Attention API
|
978 |
+
value_states (`torch.Tensor`):
|
979 |
+
Input value states to be passed to Flash Attention API
|
980 |
+
attention_mask (`torch.Tensor`):
|
981 |
+
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
|
982 |
+
position of padding tokens and 1 for the position of non-padding tokens.
|
983 |
+
dropout (`int`, *optional*):
|
984 |
+
Attention dropout
|
985 |
+
softmax_scale (`float`, *optional*):
|
986 |
+
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
|
987 |
+
use_sliding_windows (`bool`, *optional*):
|
988 |
+
Whether to activate sliding window attention.
|
989 |
+
"""
|
990 |
+
# Contains at least one padding token in the sequence
|
991 |
+
if attention_mask is not None:
|
992 |
+
batch_size = query_states.shape[0]
|
993 |
+
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
|
994 |
+
query_states, key_states, value_states, attention_mask, query_length
|
995 |
+
)
|
996 |
+
|
997 |
+
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
|
998 |
+
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
|
999 |
+
|
1000 |
+
if not use_sliding_windows:
|
1001 |
+
attn_output_unpad = flash_attn_varlen_func(
|
1002 |
+
query_states,
|
1003 |
+
key_states,
|
1004 |
+
value_states,
|
1005 |
+
cu_seqlens_q=cu_seqlens_q,
|
1006 |
+
cu_seqlens_k=cu_seqlens_k,
|
1007 |
+
max_seqlen_q=max_seqlen_in_batch_q,
|
1008 |
+
max_seqlen_k=max_seqlen_in_batch_k,
|
1009 |
+
dropout_p=dropout,
|
1010 |
+
softmax_scale=softmax_scale,
|
1011 |
+
causal=self.is_causal,
|
1012 |
+
)
|
1013 |
+
else:
|
1014 |
+
attn_output_unpad = flash_attn_varlen_func(
|
1015 |
+
query_states,
|
1016 |
+
key_states,
|
1017 |
+
value_states,
|
1018 |
+
cu_seqlens_q=cu_seqlens_q,
|
1019 |
+
cu_seqlens_k=cu_seqlens_k,
|
1020 |
+
max_seqlen_q=max_seqlen_in_batch_q,
|
1021 |
+
max_seqlen_k=max_seqlen_in_batch_k,
|
1022 |
+
dropout_p=dropout,
|
1023 |
+
softmax_scale=softmax_scale,
|
1024 |
+
causal=self.is_causal,
|
1025 |
+
window_size=(self.config.sliding_window, self.config.sliding_window),
|
1026 |
+
)
|
1027 |
+
|
1028 |
+
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
|
1029 |
+
else:
|
1030 |
+
if not use_sliding_windows:
|
1031 |
+
attn_output = flash_attn_func(
|
1032 |
+
query_states,
|
1033 |
+
key_states,
|
1034 |
+
value_states,
|
1035 |
+
dropout,
|
1036 |
+
softmax_scale=softmax_scale,
|
1037 |
+
causal=self.is_causal,
|
1038 |
+
)
|
1039 |
+
else:
|
1040 |
+
attn_output = flash_attn_func(
|
1041 |
+
query_states,
|
1042 |
+
key_states,
|
1043 |
+
value_states,
|
1044 |
+
dropout,
|
1045 |
+
softmax_scale=softmax_scale,
|
1046 |
+
causal=self.is_causal,
|
1047 |
+
window_size=(self.config.sliding_window, self.config.sliding_window),
|
1048 |
+
)
|
1049 |
+
|
1050 |
+
return attn_output
|
1051 |
+
|
1052 |
+
def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
|
1053 |
+
batch_size, kv_seq_len, num_heads, head_dim = key_layer.shape
|
1054 |
+
|
1055 |
+
# On the first iteration we need to properly re-create the padding mask
|
1056 |
+
# by slicing it on the proper place
|
1057 |
+
if kv_seq_len != attention_mask.shape[-1]:
|
1058 |
+
attention_mask_num_tokens = attention_mask.shape[-1]
|
1059 |
+
attention_mask = attention_mask[:, attention_mask_num_tokens - kv_seq_len :]
|
1060 |
+
|
1061 |
+
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
|
1062 |
+
|
1063 |
+
key_layer = index_first_axis(key_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k)
|
1064 |
+
value_layer = index_first_axis(value_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k)
|
1065 |
+
|
1066 |
+
if query_length == kv_seq_len:
|
1067 |
+
query_layer = index_first_axis(
|
1068 |
+
query_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k
|
1069 |
+
)
|
1070 |
+
cu_seqlens_q = cu_seqlens_k
|
1071 |
+
max_seqlen_in_batch_q = max_seqlen_in_batch_k
|
1072 |
+
indices_q = indices_k
|
1073 |
+
elif query_length == 1:
|
1074 |
+
max_seqlen_in_batch_q = 1
|
1075 |
+
cu_seqlens_q = torch.arange(
|
1076 |
+
batch_size + 1, dtype=torch.int32, device=query_layer.device
|
1077 |
+
) # There is a memcpy here, that is very bad.
|
1078 |
+
indices_q = cu_seqlens_q[:-1]
|
1079 |
+
query_layer = query_layer.squeeze(1)
|
1080 |
+
else:
|
1081 |
+
# The -q_len: slice assumes left padding.
|
1082 |
+
attention_mask = attention_mask[:, -query_length:]
|
1083 |
+
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
|
1084 |
+
|
1085 |
+
return (
|
1086 |
+
query_layer,
|
1087 |
+
key_layer,
|
1088 |
+
value_layer,
|
1089 |
+
indices_q,
|
1090 |
+
(cu_seqlens_q, cu_seqlens_k),
|
1091 |
+
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
|
1092 |
+
)
|
1093 |
+
|
1094 |
+
|
1095 |
+
class MistralDecoderLayer(nn.Module):
|
1096 |
+
def __init__(self, config: VMistralConfig):
|
1097 |
+
super().__init__()
|
1098 |
+
self.hidden_size = config.hidden_size
|
1099 |
+
self.self_attn = (
|
1100 |
+
MistralAttention(config=config)
|
1101 |
+
if not getattr(config, "_flash_attn_2_enabled", False)
|
1102 |
+
else MistralFlashAttention2(config)
|
1103 |
+
)
|
1104 |
+
self.mlp = MistralMLP(config)
|
1105 |
+
self.input_layernorm = MistralRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
1106 |
+
self.post_attention_layernorm = MistralRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
1107 |
+
|
1108 |
+
def forward(
|
1109 |
+
self,
|
1110 |
+
hidden_states: torch.Tensor,
|
1111 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1112 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1113 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
1114 |
+
output_attentions: Optional[bool] = False,
|
1115 |
+
use_cache: Optional[bool] = False,
|
1116 |
+
**kwargs,
|
1117 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
1118 |
+
if "padding_mask" in kwargs:
|
1119 |
+
warnings.warn(
|
1120 |
+
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use"
|
1121 |
+
" `attention_mask` instead.`"
|
1122 |
+
)
|
1123 |
+
"""
|
1124 |
+
Args:
|
1125 |
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
1126 |
+
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
|
1127 |
+
`(batch, sequence_length)` where padding elements are indicated by 0.
|
1128 |
+
output_attentions (`bool`, *optional*):
|
1129 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
1130 |
+
returned tensors for more detail.
|
1131 |
+
use_cache (`bool`, *optional*):
|
1132 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
1133 |
+
(see `past_key_values`).
|
1134 |
+
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
1135 |
+
"""
|
1136 |
+
|
1137 |
+
residual = hidden_states
|
1138 |
+
|
1139 |
+
hidden_states = self.input_layernorm(hidden_states)
|
1140 |
+
|
1141 |
+
# Self Attention
|
1142 |
+
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
1143 |
+
hidden_states=hidden_states,
|
1144 |
+
attention_mask=attention_mask,
|
1145 |
+
position_ids=position_ids,
|
1146 |
+
past_key_value=past_key_value,
|
1147 |
+
output_attentions=output_attentions,
|
1148 |
+
use_cache=use_cache,
|
1149 |
+
)
|
1150 |
+
hidden_states = residual + hidden_states
|
1151 |
+
|
1152 |
+
# Fully Connected
|
1153 |
+
residual = hidden_states
|
1154 |
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
1155 |
+
hidden_states = self.mlp(hidden_states)
|
1156 |
+
hidden_states = residual + hidden_states
|
1157 |
+
|
1158 |
+
outputs = (hidden_states,)
|
1159 |
+
|
1160 |
+
if output_attentions:
|
1161 |
+
outputs += (self_attn_weights,)
|
1162 |
+
|
1163 |
+
if use_cache:
|
1164 |
+
outputs += (present_key_value,)
|
1165 |
+
|
1166 |
+
return outputs
|
1167 |
+
|
1168 |
+
|
1169 |
+
MISTRAL_START_DOCSTRING = r"""
|
1170 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
1171 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
1172 |
+
etc.)
|
1173 |
+
|
1174 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
1175 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
1176 |
+
and behavior.
|
1177 |
+
|
1178 |
+
Parameters:
|
1179 |
+
config ([`VMistralConfig`]):
|
1180 |
+
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
1181 |
+
load the weights associated with the model, only the configuration. Check out the
|
1182 |
+
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
1183 |
+
"""
|
1184 |
+
|
1185 |
+
|
1186 |
+
@add_start_docstrings(
|
1187 |
+
"The bare Mistral Model outputting raw hidden-states without any specific head on top.",
|
1188 |
+
MISTRAL_START_DOCSTRING,
|
1189 |
+
)
|
1190 |
+
class VMistralPreTrainedModel(PreTrainedModel):
|
1191 |
+
config_class = VMistralConfig
|
1192 |
+
base_model_prefix = "model"
|
1193 |
+
supports_gradient_checkpointing = True
|
1194 |
+
_no_split_modules = ["MistralDecoderLayer"]
|
1195 |
+
_skip_keys_device_placement = "past_key_values"
|
1196 |
+
_supports_sdpa = False
|
1197 |
+
|
1198 |
+
def _init_weights(self, module):
|
1199 |
+
# important: this ported version of the model isn't meant for training from scratch - only
|
1200 |
+
# inference and fine-tuning - so the proper init weights code has been removed - the m4 code
|
1201 |
+
# base should be used for training from scratch and it contains the correct code.
|
1202 |
+
std = self.config.initializer_range
|
1203 |
+
if isinstance(module, nn.Linear):
|
1204 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
1205 |
+
if module.bias is not None:
|
1206 |
+
module.bias.data.zero_()
|
1207 |
+
elif isinstance(module, nn.Embedding):
|
1208 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
1209 |
+
if module.padding_idx is not None:
|
1210 |
+
module.weight.data[module.padding_idx].zero_()
|
1211 |
+
|
1212 |
+
# @classmethod
|
1213 |
+
# def override_vision_model_wrapper(cls, model, config, vision_model_name, vision_model_params, torch_dtype):
|
1214 |
+
# # this can be called via from_pretrained from a class w/ head or w/o head so we extract the beheaded model version
|
1215 |
+
# beheaded_model = model.model if hasattr(model, "model") else model
|
1216 |
+
# cls.override_vision_model(beheaded_model, vision_model_name, vision_model_params, torch_dtype)
|
1217 |
+
# beheaded_model.freeze_relevant_params(config)
|
1218 |
+
|
1219 |
+
|
1220 |
+
MISTRAL_INPUTS_DOCSTRING = r"""
|
1221 |
+
Args:
|
1222 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
1223 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
1224 |
+
it.
|
1225 |
+
|
1226 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
1227 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
1228 |
+
|
1229 |
+
[What are input IDs?](../glossary#input-ids)
|
1230 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1231 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
1232 |
+
|
1233 |
+
- 1 for tokens that are **not masked**,
|
1234 |
+
- 0 for tokens that are **masked**.
|
1235 |
+
|
1236 |
+
[What are attention masks?](../glossary#attention-mask)
|
1237 |
+
|
1238 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
1239 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
1240 |
+
|
1241 |
+
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
|
1242 |
+
`past_key_values`).
|
1243 |
+
|
1244 |
+
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
1245 |
+
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
1246 |
+
information on the default strategy.
|
1247 |
+
|
1248 |
+
- 1 indicates the head is **not masked**,
|
1249 |
+
- 0 indicates the head is **masked**.
|
1250 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1251 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
1252 |
+
config.n_positions - 1]`.
|
1253 |
+
|
1254 |
+
[What are position IDs?](../glossary#position-ids)
|
1255 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
1256 |
+
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
1257 |
+
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
|
1258 |
+
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
|
1259 |
+
|
1260 |
+
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
1261 |
+
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
|
1262 |
+
|
1263 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
1264 |
+
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
1265 |
+
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
1266 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
1267 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
1268 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
1269 |
+
model's internal embedding lookup matrix.
|
1270 |
+
use_cache (`bool`, *optional*):
|
1271 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
1272 |
+
`past_key_values`).
|
1273 |
+
output_attentions (`bool`, *optional*):
|
1274 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
1275 |
+
tensors for more detail.
|
1276 |
+
output_hidden_states (`bool`, *optional*):
|
1277 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
1278 |
+
more detail.
|
1279 |
+
return_dict (`bool`, *optional*):
|
1280 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
1281 |
+
"""
|
1282 |
+
|
1283 |
+
|
1284 |
+
@add_start_docstrings(
|
1285 |
+
"The bare Mistral Model outputting raw hidden-states without any specific head on top.",
|
1286 |
+
MISTRAL_START_DOCSTRING,
|
1287 |
+
)
|
1288 |
+
class VMistralModel(VMistralPreTrainedModel):
|
1289 |
+
"""
|
1290 |
+
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`MistralDecoderLayer`]
|
1291 |
+
|
1292 |
+
Args:
|
1293 |
+
config: VMistralConfig
|
1294 |
+
"""
|
1295 |
+
|
1296 |
+
def __init__(self, config: VMistralConfig, vision_model=None):
|
1297 |
+
super().__init__(config)
|
1298 |
+
self.config = config
|
1299 |
+
self.padding_idx = config.pad_token_id
|
1300 |
+
self.vocab_size = config.vocab_size
|
1301 |
+
|
1302 |
+
self.sliding_window = config.sliding_window
|
1303 |
+
|
1304 |
+
self.embed_tokens = DecoupledEmbedding(
|
1305 |
+
num_embeddings=config.vocab_size,
|
1306 |
+
num_additional_embeddings=config.additional_vocab_size,
|
1307 |
+
embedding_dim=config.hidden_size,
|
1308 |
+
partially_freeze=config.freeze_text_layers,
|
1309 |
+
padding_idx=self.padding_idx,
|
1310 |
+
)
|
1311 |
+
|
1312 |
+
# Load an uninitialized model and later in from_pretrained will load the pre-trained model -
|
1313 |
+
# this solves the losing of weights in `from_pretrained` on the main model
|
1314 |
+
self.vision_model = SiglipVisionModel(config.vision_config)
|
1315 |
+
|
1316 |
+
# Dim projection - projecting from the vision dim to the text dim
|
1317 |
+
self.modality_projection = ModalityProjection(
|
1318 |
+
embed_dim_in=self.config.vision_config.hidden_size, embed_dim_out=self.config.hidden_size
|
1319 |
+
)
|
1320 |
+
|
1321 |
+
# Perceiver Resampler
|
1322 |
+
if config.use_resampler:
|
1323 |
+
self.perceiver_resampler = PerceiverResampler(
|
1324 |
+
config.hidden_size,
|
1325 |
+
config.perceiver_config.resampler_depth,
|
1326 |
+
config.perceiver_config.resampler_n_heads,
|
1327 |
+
config.perceiver_config.resampler_head_dim,
|
1328 |
+
config.perceiver_config.resampler_n_latents,
|
1329 |
+
config.perceiver_config.qk_layer_norms_perceiver,
|
1330 |
+
)
|
1331 |
+
|
1332 |
+
if config.use_resampler:
|
1333 |
+
self.image_seq_len = config.perceiver_config.resampler_n_latents
|
1334 |
+
else:
|
1335 |
+
self.image_seq_len = (
|
1336 |
+
config.vision_config.image_size // config.vision_config.patch_size
|
1337 |
+
) ** 2 # TODO: pretty sure that does not work for CLIP models since there is the CLS token
|
1338 |
+
self.image_token_id = self.config.image_token_id
|
1339 |
+
|
1340 |
+
self.layers = nn.ModuleList([MistralDecoderLayer(config) for _ in range(config.num_hidden_layers)])
|
1341 |
+
|
1342 |
+
self.gradient_checkpointing = False
|
1343 |
+
|
1344 |
+
self.norm = MistralRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
1345 |
+
|
1346 |
+
# Initialize weights and apply final processing
|
1347 |
+
self.post_init()
|
1348 |
+
|
1349 |
+
self.freeze_relevant_params(config)
|
1350 |
+
|
1351 |
+
def freeze_relevant_params(self, config=None):
|
1352 |
+
if config is None:
|
1353 |
+
config = self.config
|
1354 |
+
|
1355 |
+
if config.freeze_text_layers:
|
1356 |
+
self.freeze_text_layers(config.freeze_text_module_exceptions)
|
1357 |
+
|
1358 |
+
if config.freeze_vision_layers:
|
1359 |
+
freeze_model(self.vision_model, module_exceptions=config.freeze_vision_module_exceptions)
|
1360 |
+
|
1361 |
+
def freeze_text_layers(self, module_exceptions):
|
1362 |
+
for module in [self.layers, self.norm]:
|
1363 |
+
freeze_model(module, module_exceptions=module_exceptions)
|
1364 |
+
|
1365 |
+
def get_input_embeddings(self):
|
1366 |
+
return self.embed_tokens
|
1367 |
+
|
1368 |
+
def set_input_embeddings(self, value):
|
1369 |
+
self.embed_tokens = value
|
1370 |
+
|
1371 |
+
def inputs_merger(
|
1372 |
+
self,
|
1373 |
+
input_ids: torch.LongTensor = None,
|
1374 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1375 |
+
image_hidden_states: Optional[torch.Tensor] = None,
|
1376 |
+
num_images: Optional[int] = None,
|
1377 |
+
):
|
1378 |
+
"""
|
1379 |
+
This method aims at merging the token embeddings with the image hidden states into one single sequence of vectors that are fed to the transformer LM.
|
1380 |
+
The merging happens as follows:
|
1381 |
+
- The text token sequence is: `tok_1 tok_2 tok_3 <fake_token_around_image> <image> <image> ... <image> <fake_token_around_image> tok_4`.
|
1382 |
+
- We get the image hidden states for the image through the vision encoder (and potentially the perceiver), and that hidden state is then projected into the text embedding space.
|
1383 |
+
We thus have a sequence of image hidden states of size (1, image_seq_len, hidden_dim), where 1 is for batch_size of 1 image and hidden_dim is the hidden_dim of the LM transformer.
|
1384 |
+
- The merging happens so that we obtain the following sequence: `vector_tok_1 vector_tok_2 vector_tok_3 vector_fake_tok_around_image {sequence of image_seq_len image hidden states} vector_fake_toke_around_image vector_tok_4`. That sequence is fed to the LM.
|
1385 |
+
- To fit the format of that sequence, `input_ids`, `input_embeds`, `attention_mask` are all 3 adapted to insert the image hidden states.
|
1386 |
+
"""
|
1387 |
+
batch_size = input_ids.size(0)
|
1388 |
+
|
1389 |
+
if inputs_embeds is not None:
|
1390 |
+
vision_pipeline_output_seq_len = image_hidden_states.shape[1]
|
1391 |
+
vision_hidden_size = image_hidden_states.shape[2]
|
1392 |
+
new_inputs_embeds = inputs_embeds.clone()
|
1393 |
+
# Get a view of the image_hidden_states separating batch_size and num_images, to discard padding hidden_states
|
1394 |
+
image_hidden_states = image_hidden_states.view(
|
1395 |
+
batch_size, num_images, vision_pipeline_output_seq_len, vision_hidden_size
|
1396 |
+
)
|
1397 |
+
for batch_idx in range(batch_size):
|
1398 |
+
# Get the number of images for this particular example
|
1399 |
+
example_num_images = (input_ids[batch_idx] == self.image_token_id).sum() // self.image_seq_len
|
1400 |
+
# Get the image_hidden_states corresponding to True images for the example, so get rid of the padding images.
|
1401 |
+
example_true_image_hidden_states = image_hidden_states[batch_idx][:example_num_images]
|
1402 |
+
if (
|
1403 |
+
new_inputs_embeds[batch_idx][input_ids[batch_idx] == self.image_token_id].shape[0]
|
1404 |
+
!= example_num_images * vision_pipeline_output_seq_len
|
1405 |
+
):
|
1406 |
+
raise ValueError(
|
1407 |
+
"new_inputs_embeds to replace has shape[0]:"
|
1408 |
+
f" {new_inputs_embeds[batch_idx][input_ids[batch_idx] == self.image_token_id].shape[0]} but"
|
1409 |
+
" should have shape[0]:"
|
1410 |
+
f" {example_num_images}*{vision_pipeline_output_seq_len}={example_num_images * vision_pipeline_output_seq_len} "
|
1411 |
+
)
|
1412 |
+
# Insert the image_hidden_states
|
1413 |
+
new_inputs_embeds[batch_idx][input_ids[batch_idx] == self.image_token_id] = (
|
1414 |
+
example_true_image_hidden_states.view(
|
1415 |
+
example_num_images * vision_pipeline_output_seq_len,
|
1416 |
+
vision_hidden_size,
|
1417 |
+
)
|
1418 |
+
)
|
1419 |
+
|
1420 |
+
return_dict = {}
|
1421 |
+
if inputs_embeds is not None:
|
1422 |
+
return_dict["inputs_embeds"] = new_inputs_embeds
|
1423 |
+
|
1424 |
+
return return_dict
|
1425 |
+
|
1426 |
+
@add_start_docstrings_to_model_forward(MISTRAL_INPUTS_DOCSTRING)
|
1427 |
+
def forward(
|
1428 |
+
self,
|
1429 |
+
input_ids: torch.LongTensor = None,
|
1430 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1431 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1432 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1433 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1434 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
1435 |
+
image_hidden_states: Optional[torch.FloatTensor] = None,
|
1436 |
+
use_cache: Optional[bool] = None,
|
1437 |
+
output_attentions: Optional[bool] = None,
|
1438 |
+
output_hidden_states: Optional[bool] = None,
|
1439 |
+
return_dict: Optional[bool] = None,
|
1440 |
+
) -> Union[Tuple, Img2HTMLBaseModelOutputWithPast]:
|
1441 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
1442 |
+
|
1443 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1444 |
+
output_hidden_states = (
|
1445 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1446 |
+
)
|
1447 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
1448 |
+
|
1449 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1450 |
+
|
1451 |
+
# retrieve input_ids and inputs_embeds
|
1452 |
+
if input_ids is not None and inputs_embeds is not None:
|
1453 |
+
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
|
1454 |
+
elif input_ids is not None:
|
1455 |
+
batch_size, seq_length = input_ids.shape
|
1456 |
+
elif inputs_embeds is not None:
|
1457 |
+
batch_size, seq_length, _ = inputs_embeds.shape
|
1458 |
+
else:
|
1459 |
+
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
|
1460 |
+
|
1461 |
+
seq_length_with_past = seq_length
|
1462 |
+
past_key_values_length = 0
|
1463 |
+
|
1464 |
+
if past_key_values is not None:
|
1465 |
+
past_key_values_length = past_key_values[0][0].shape[2]
|
1466 |
+
seq_length_with_past = seq_length_with_past + past_key_values_length
|
1467 |
+
|
1468 |
+
if position_ids is None:
|
1469 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
1470 |
+
position_ids = torch.arange(
|
1471 |
+
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
|
1472 |
+
)
|
1473 |
+
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
|
1474 |
+
else:
|
1475 |
+
position_ids = position_ids.view(-1, seq_length).long()
|
1476 |
+
|
1477 |
+
if inputs_embeds is None:
|
1478 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
1479 |
+
|
1480 |
+
# START VISUAL INPUTS INTEGRATION
|
1481 |
+
if pixel_values is not None and image_hidden_states is not None:
|
1482 |
+
raise ValueError("You cannot specify both pixel_values and image_hidden_states at the same time")
|
1483 |
+
elif pixel_values is not None:
|
1484 |
+
pixel_values = pixel_values.to(dtype=self.dtype, device=input_ids.device) # fp16 compatibility
|
1485 |
+
batch_size, num_images = pixel_values.size(0), pixel_values.size(1)
|
1486 |
+
pixel_values = pixel_values.contiguous().view(batch_size * num_images, *pixel_values.shape[2:])
|
1487 |
+
# Get sequence from the vision encoder
|
1488 |
+
image_hidden_states = self.vision_model(pixel_values=pixel_values).last_hidden_state
|
1489 |
+
|
1490 |
+
# Modality projection
|
1491 |
+
image_hidden_states = self.modality_projection(image_hidden_states)
|
1492 |
+
|
1493 |
+
if self.config.use_resampler:
|
1494 |
+
image_hidden_states = self.perceiver_resampler(image_hidden_states)
|
1495 |
+
|
1496 |
+
if past_key_values is None:
|
1497 |
+
# When we generate, we don't want to replace the potential image_token_id that we generated by images
|
1498 |
+
# that simply don't exist
|
1499 |
+
new_inp = self.inputs_merger(
|
1500 |
+
input_ids=input_ids,
|
1501 |
+
inputs_embeds=inputs_embeds,
|
1502 |
+
image_hidden_states=image_hidden_states,
|
1503 |
+
num_images=num_images,
|
1504 |
+
)
|
1505 |
+
inputs_embeds = new_inp["inputs_embeds"]
|
1506 |
+
|
1507 |
+
# Can do add some token types embeddings here (image token vs text token)
|
1508 |
+
# something like inputs_embeds += self.token_types(token_types)
|
1509 |
+
|
1510 |
+
# embed positions
|
1511 |
+
if (
|
1512 |
+
attention_mask is not None
|
1513 |
+
and hasattr(self.config, "_flash_attn_2_enabled")
|
1514 |
+
and self.config._flash_attn_2_enabled
|
1515 |
+
and past_key_values is not None
|
1516 |
+
):
|
1517 |
+
is_padding_right = attention_mask[:, -1].sum().item() != batch_size
|
1518 |
+
if is_padding_right:
|
1519 |
+
raise ValueError(
|
1520 |
+
"You are attempting to perform batched generation with padding_side='right'"
|
1521 |
+
" this may lead to unexpected behaviour for Flash Attention version of Mistral. Make sure to "
|
1522 |
+
" call `tokenizer.padding_side = 'left'` before tokenizing the input. "
|
1523 |
+
)
|
1524 |
+
|
1525 |
+
if getattr(self.config, "_flash_attn_2_enabled", False):
|
1526 |
+
# 2d mask is passed through the layers
|
1527 |
+
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
|
1528 |
+
else:
|
1529 |
+
# 4d mask is passed through the layers
|
1530 |
+
attention_mask = _prepare_4d_causal_attention_mask(
|
1531 |
+
attention_mask,
|
1532 |
+
(batch_size, seq_length),
|
1533 |
+
inputs_embeds,
|
1534 |
+
past_key_values_length,
|
1535 |
+
sliding_window=self.config.sliding_window,
|
1536 |
+
)
|
1537 |
+
attention_mask[attention_mask == -float("inf")] = torch.finfo(self.dtype).min
|
1538 |
+
|
1539 |
+
hidden_states = inputs_embeds
|
1540 |
+
|
1541 |
+
if self.gradient_checkpointing and self.training:
|
1542 |
+
if use_cache:
|
1543 |
+
logger.warning_once(
|
1544 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
1545 |
+
)
|
1546 |
+
use_cache = False
|
1547 |
+
|
1548 |
+
# decoder layers
|
1549 |
+
all_hidden_states = () if output_hidden_states else None
|
1550 |
+
all_self_attns = () if output_attentions else None
|
1551 |
+
next_decoder_cache = () if use_cache else None
|
1552 |
+
|
1553 |
+
for idx, decoder_layer in enumerate(self.layers):
|
1554 |
+
if output_hidden_states:
|
1555 |
+
all_hidden_states += (hidden_states,)
|
1556 |
+
|
1557 |
+
past_key_value = past_key_values[idx] if past_key_values is not None else None
|
1558 |
+
|
1559 |
+
if self.gradient_checkpointing and self.training:
|
1560 |
+
layer_outputs = self._gradient_checkpointing_func(
|
1561 |
+
decoder_layer.__call__,
|
1562 |
+
hidden_states,
|
1563 |
+
attention_mask,
|
1564 |
+
position_ids,
|
1565 |
+
past_key_value,
|
1566 |
+
output_attentions,
|
1567 |
+
use_cache,
|
1568 |
+
)
|
1569 |
+
else:
|
1570 |
+
layer_outputs = decoder_layer(
|
1571 |
+
hidden_states,
|
1572 |
+
attention_mask=attention_mask,
|
1573 |
+
position_ids=position_ids,
|
1574 |
+
past_key_value=past_key_value,
|
1575 |
+
output_attentions=output_attentions,
|
1576 |
+
use_cache=use_cache,
|
1577 |
+
)
|
1578 |
+
|
1579 |
+
hidden_states = layer_outputs[0]
|
1580 |
+
|
1581 |
+
if use_cache:
|
1582 |
+
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
|
1583 |
+
|
1584 |
+
if output_attentions:
|
1585 |
+
all_self_attns += (layer_outputs[1],)
|
1586 |
+
|
1587 |
+
hidden_states = self.norm(hidden_states)
|
1588 |
+
|
1589 |
+
# add hidden states from the last decoder layer
|
1590 |
+
if output_hidden_states:
|
1591 |
+
all_hidden_states += (hidden_states,)
|
1592 |
+
|
1593 |
+
next_cache = next_decoder_cache if use_cache else None
|
1594 |
+
if not return_dict:
|
1595 |
+
return tuple(
|
1596 |
+
v
|
1597 |
+
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, image_hidden_states]
|
1598 |
+
if v is not None
|
1599 |
+
)
|
1600 |
+
return Img2HTMLBaseModelOutputWithPast(
|
1601 |
+
last_hidden_state=hidden_states,
|
1602 |
+
past_key_values=next_cache,
|
1603 |
+
hidden_states=all_hidden_states,
|
1604 |
+
attentions=all_self_attns,
|
1605 |
+
image_hidden_states=image_hidden_states,
|
1606 |
+
)
|
1607 |
+
|
1608 |
+
|
1609 |
+
class Img2HTMLForVisionText2Text(VMistralPreTrainedModel):
|
1610 |
+
_tied_weights_keys = ["lm_head.weight"]
|
1611 |
+
|
1612 |
+
def __init__(self, config, vision_model=None):
|
1613 |
+
super().__init__(config)
|
1614 |
+
self.model = VMistralModel(config, vision_model=vision_model)
|
1615 |
+
self.image_token_id = self.config.image_token_id
|
1616 |
+
self.lm_head = DecoupledLinear(
|
1617 |
+
in_features=config.hidden_size,
|
1618 |
+
out_features=config.vocab_size,
|
1619 |
+
out_additional_features=config.additional_vocab_size,
|
1620 |
+
bias=False,
|
1621 |
+
partially_freeze=config.freeze_lm_head,
|
1622 |
+
)
|
1623 |
+
|
1624 |
+
# Initialize weights and apply final processing
|
1625 |
+
self.post_init()
|
1626 |
+
|
1627 |
+
def get_input_embeddings(self):
|
1628 |
+
return self.model.embed_tokens
|
1629 |
+
|
1630 |
+
def set_input_embeddings(self, value):
|
1631 |
+
self.model.embed_tokens = value
|
1632 |
+
|
1633 |
+
def get_output_embeddings(self):
|
1634 |
+
return self.lm_head
|
1635 |
+
|
1636 |
+
def set_output_embeddings(self, new_embeddings):
|
1637 |
+
self.lm_head = new_embeddings
|
1638 |
+
|
1639 |
+
def set_decoder(self, decoder):
|
1640 |
+
self.model = decoder
|
1641 |
+
|
1642 |
+
def get_decoder(self):
|
1643 |
+
return self.model
|
1644 |
+
|
1645 |
+
def tie_weights(self):
|
1646 |
+
"""
|
1647 |
+
Overwrite `transformers.modeling_utils.PreTrainedModel.tie_weights` to handle the case of DecoupledLinear and DecoupledEmbedding.
|
1648 |
+
"""
|
1649 |
+
output_embeddings = self.get_output_embeddings()
|
1650 |
+
input_embeddings = self.get_input_embeddings()
|
1651 |
+
|
1652 |
+
if getattr(self.config, "tie_word_embeddings", True):
|
1653 |
+
output_embeddings.weight = input_embeddings.weight
|
1654 |
+
if input_embeddings.num_additional_embeddings > 0:
|
1655 |
+
assert output_embeddings.out_additional_features == input_embeddings.num_additional_embeddings
|
1656 |
+
output_embeddings.additional_fc.weight = input_embeddings.additional_embedding.weight
|
1657 |
+
|
1658 |
+
if hasattr(output_embeddings, "out_features") and hasattr(input_embeddings, "num_embeddings"):
|
1659 |
+
output_embeddings.out_features = input_embeddings.num_embeddings
|
1660 |
+
if hasattr(output_embeddings, "out_additional_features") and hasattr(
|
1661 |
+
input_embeddings, "num_additional_embeddings"
|
1662 |
+
):
|
1663 |
+
output_embeddings.out_additional_features = input_embeddings.num_additional_embeddings
|
1664 |
+
|
1665 |
+
@add_start_docstrings_to_model_forward(MISTRAL_INPUTS_DOCSTRING)
|
1666 |
+
@replace_return_docstrings(output_type=Img2HTMLCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
1667 |
+
def forward(
|
1668 |
+
self,
|
1669 |
+
input_ids: torch.LongTensor = None,
|
1670 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1671 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1672 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1673 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1674 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
1675 |
+
image_hidden_states: Optional[torch.FloatTensor] = None,
|
1676 |
+
labels: Optional[torch.LongTensor] = None,
|
1677 |
+
use_cache: Optional[bool] = None,
|
1678 |
+
output_attentions: Optional[bool] = None,
|
1679 |
+
output_hidden_states: Optional[bool] = None,
|
1680 |
+
return_dict: Optional[bool] = None,
|
1681 |
+
) -> Union[Tuple, Img2HTMLCausalLMOutputWithPast]:
|
1682 |
+
r"""
|
1683 |
+
Args:
|
1684 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1685 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
1686 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
1687 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
1688 |
+
|
1689 |
+
Returns:
|
1690 |
+
|
1691 |
+
"""
|
1692 |
+
|
1693 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1694 |
+
output_hidden_states = (
|
1695 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1696 |
+
)
|
1697 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1698 |
+
|
1699 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
1700 |
+
outputs = self.model(
|
1701 |
+
input_ids=input_ids,
|
1702 |
+
attention_mask=attention_mask,
|
1703 |
+
position_ids=position_ids,
|
1704 |
+
past_key_values=past_key_values,
|
1705 |
+
inputs_embeds=inputs_embeds,
|
1706 |
+
pixel_values=pixel_values,
|
1707 |
+
image_hidden_states=image_hidden_states,
|
1708 |
+
use_cache=use_cache,
|
1709 |
+
output_attentions=output_attentions,
|
1710 |
+
output_hidden_states=output_hidden_states,
|
1711 |
+
return_dict=return_dict,
|
1712 |
+
)
|
1713 |
+
|
1714 |
+
hidden_states = outputs[0]
|
1715 |
+
logits = self.lm_head(hidden_states)
|
1716 |
+
logits = logits.float()
|
1717 |
+
|
1718 |
+
loss = None
|
1719 |
+
if labels is not None:
|
1720 |
+
labels = labels.to(logits.device)
|
1721 |
+
# Shift so that tokens < n predict n
|
1722 |
+
if attention_mask is not None:
|
1723 |
+
shift_attention_mask = attention_mask[..., 1:].to(logits.device)
|
1724 |
+
shift_logits = logits[..., :-1, :][shift_attention_mask != 0].contiguous()
|
1725 |
+
shift_labels = labels[..., 1:][shift_attention_mask != 0].contiguous()
|
1726 |
+
else:
|
1727 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
1728 |
+
shift_labels = labels[..., 1:].contiguous()
|
1729 |
+
# Flatten the tokens
|
1730 |
+
loss_fct = CrossEntropyLoss(ignore_index=self.image_token_id)
|
1731 |
+
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
|
1732 |
+
|
1733 |
+
if not return_dict:
|
1734 |
+
output = (logits,) + outputs[1:]
|
1735 |
+
return (loss,) + output if loss is not None else output
|
1736 |
+
|
1737 |
+
return Img2HTMLCausalLMOutputWithPast(
|
1738 |
+
loss=loss,
|
1739 |
+
logits=logits,
|
1740 |
+
past_key_values=outputs.past_key_values,
|
1741 |
+
hidden_states=outputs.hidden_states,
|
1742 |
+
attentions=outputs.attentions,
|
1743 |
+
image_hidden_states=outputs.image_hidden_states,
|
1744 |
+
)
|
1745 |
+
|
1746 |
+
def prepare_inputs_for_generation(self, input_ids, past=None, **kwargs):
|
1747 |
+
image_hidden_states = kwargs.pop("image_hidden_states", None)
|
1748 |
+
if image_hidden_states is not None:
|
1749 |
+
kwargs["pixel_values"] = None
|
1750 |
+
inputs = prepare_inputs_for_generation(input_ids, past=past, **kwargs)
|
1751 |
+
unwanted_kwargs = ["token_type_ids"]
|
1752 |
+
for kwarg in unwanted_kwargs:
|
1753 |
+
inputs.pop(kwarg, None)
|
1754 |
+
return inputs
|
1755 |
+
|
1756 |
+
@staticmethod
|
1757 |
+
def _expand_inputs_for_generation(
|
1758 |
+
*args,
|
1759 |
+
**model_kwargs,
|
1760 |
+
):
|
1761 |
+
return expand_inputs_for_generation(*args, **model_kwargs)
|
1762 |
+
|
1763 |
+
@staticmethod
|
1764 |
+
def _update_model_kwargs_for_generation(outputs, model_kwargs, is_encoder_decoder):
|
1765 |
+
return update_model_kwargs_for_generation(outputs, model_kwargs)
|
1766 |
+
|
1767 |
+
@staticmethod
|
1768 |
+
def _reorder_cache(past, beam_idx):
|
1769 |
+
reordered_past = ()
|
1770 |
+
for layer_past in past:
|
1771 |
+
reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),)
|
1772 |
+
return reordered_past
|
vision.py
ADDED
@@ -0,0 +1,1361 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 Google AI and The HuggingFace Team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" A simplified copy of https://huggingface.co/HuggingFaceM4/siglip-so400m-14-384-flash-attn2 """
|
16 |
+
|
17 |
+
|
18 |
+
from dataclasses import dataclass
|
19 |
+
from typing import Any, Optional, Tuple, Union
|
20 |
+
|
21 |
+
import torch
|
22 |
+
import torch.nn.functional as F
|
23 |
+
import torch.utils.checkpoint
|
24 |
+
from torch import nn
|
25 |
+
from transformers.activations import ACT2FN
|
26 |
+
from transformers.modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling
|
27 |
+
from transformers.modeling_utils import PreTrainedModel
|
28 |
+
from transformers.utils import (
|
29 |
+
ModelOutput,
|
30 |
+
add_start_docstrings,
|
31 |
+
add_start_docstrings_to_model_forward,
|
32 |
+
is_flash_attn_2_available,
|
33 |
+
logging,
|
34 |
+
replace_return_docstrings,
|
35 |
+
)
|
36 |
+
|
37 |
+
from .configuration_img2html import VMistralVisionConfig
|
38 |
+
|
39 |
+
|
40 |
+
logger = logging.get_logger(__name__)
|
41 |
+
|
42 |
+
# _CHECKPOINT_FOR_DOC = "google/siglip-base-patch16-224"
|
43 |
+
|
44 |
+
# SIGLIP_PRETRAINED_MODEL_ARCHIVE_LIST = [
|
45 |
+
# "google/siglip-base-patch16-224",
|
46 |
+
# # See all SigLIP models at https://huggingface.co/models?filter=siglip
|
47 |
+
# ]
|
48 |
+
|
49 |
+
if is_flash_attn_2_available():
|
50 |
+
from flash_attn import flash_attn_func, flash_attn_varlen_func
|
51 |
+
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
|
52 |
+
|
53 |
+
|
54 |
+
# Copied from transformers.models.llama.modeling_llama._get_unpad_data
|
55 |
+
def _get_unpad_data(attention_mask):
|
56 |
+
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
57 |
+
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
58 |
+
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
59 |
+
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0))
|
60 |
+
return (
|
61 |
+
indices,
|
62 |
+
cu_seqlens,
|
63 |
+
max_seqlen_in_batch,
|
64 |
+
)
|
65 |
+
|
66 |
+
|
67 |
+
# # Copied from transformers.models.bart.modeling_bart._expand_mask
|
68 |
+
# def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
|
69 |
+
# """
|
70 |
+
# Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
|
71 |
+
# """
|
72 |
+
# bsz, src_len = mask.size()
|
73 |
+
# tgt_len = tgt_len if tgt_len is not None else src_len
|
74 |
+
|
75 |
+
# expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
|
76 |
+
|
77 |
+
# inverted_mask = 1.0 - expanded_mask
|
78 |
+
|
79 |
+
# return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
|
80 |
+
|
81 |
+
|
82 |
+
# # contrastive loss function, adapted from
|
83 |
+
# # https://sachinruk.github.io/blog/2021-03-07-siglip.html
|
84 |
+
# def contrastive_loss(logits: torch.Tensor) -> torch.Tensor:
|
85 |
+
# return nn.functional.cross_entropy(logits, torch.arange(len(logits), device=logits.device))
|
86 |
+
|
87 |
+
|
88 |
+
# # Copied from transformers.models.clip.modeling_clip.clip_loss with clip->siglip
|
89 |
+
# def siglip_loss(similarity: torch.Tensor) -> torch.Tensor:
|
90 |
+
# caption_loss = contrastive_loss(similarity)
|
91 |
+
# image_loss = contrastive_loss(similarity.t())
|
92 |
+
# return (caption_loss + image_loss) / 2.0
|
93 |
+
|
94 |
+
|
95 |
+
@dataclass
|
96 |
+
# Copied from transformers.models.clip.modeling_clip.CLIPVisionModelOutput with CLIP->Siglip
|
97 |
+
class SiglipVisionModelOutput(ModelOutput):
|
98 |
+
"""
|
99 |
+
Base class for vision model's outputs that also contains image embeddings of the pooling of the last hidden states.
|
100 |
+
|
101 |
+
Args:
|
102 |
+
image_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`):
|
103 |
+
The image embeddings obtained by applying the projection layer to the pooler_output.
|
104 |
+
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
105 |
+
Sequence of hidden-states at the output of the last layer of the model.
|
106 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
107 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
108 |
+
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
109 |
+
|
110 |
+
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
111 |
+
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
112 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
113 |
+
sequence_length)`.
|
114 |
+
|
115 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
116 |
+
heads.
|
117 |
+
"""
|
118 |
+
|
119 |
+
image_embeds: Optional[torch.FloatTensor] = None
|
120 |
+
last_hidden_state: torch.FloatTensor = None
|
121 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
122 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
123 |
+
|
124 |
+
|
125 |
+
# @dataclass
|
126 |
+
# # Copied from transformers.models.clip.modeling_clip.CLIPTextModelOutput with CLIP->Siglip
|
127 |
+
# class SiglipTextModelOutput(ModelOutput):
|
128 |
+
# """
|
129 |
+
# Base class for text model's outputs that also contains a pooling of the last hidden states.
|
130 |
+
|
131 |
+
# Args:
|
132 |
+
# text_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`):
|
133 |
+
# The text embeddings obtained by applying the projection layer to the pooler_output.
|
134 |
+
# last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
135 |
+
# Sequence of hidden-states at the output of the last layer of the model.
|
136 |
+
# hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
137 |
+
# Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
138 |
+
# one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
139 |
+
|
140 |
+
# Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
141 |
+
# attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
142 |
+
# Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
143 |
+
# sequence_length)`.
|
144 |
+
|
145 |
+
# Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
146 |
+
# heads.
|
147 |
+
# """
|
148 |
+
|
149 |
+
# text_embeds: Optional[torch.FloatTensor] = None
|
150 |
+
# last_hidden_state: torch.FloatTensor = None
|
151 |
+
# hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
152 |
+
# attentions: Optional[Tuple[torch.FloatTensor]] = None
|
153 |
+
|
154 |
+
|
155 |
+
# @dataclass
|
156 |
+
# # Copied from transformers.models.clip.modeling_clip.CLIPOutput with CLIP->Siglip
|
157 |
+
# class SiglipOutput(ModelOutput):
|
158 |
+
# """
|
159 |
+
# Args:
|
160 |
+
# loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `return_loss` is `True`):
|
161 |
+
# Contrastive loss for image-text similarity.
|
162 |
+
# logits_per_image:(`torch.FloatTensor` of shape `(image_batch_size, text_batch_size)`):
|
163 |
+
# The scaled dot product scores between `image_embeds` and `text_embeds`. This represents the image-text
|
164 |
+
# similarity scores.
|
165 |
+
# logits_per_text:(`torch.FloatTensor` of shape `(text_batch_size, image_batch_size)`):
|
166 |
+
# The scaled dot product scores between `text_embeds` and `image_embeds`. This represents the text-image
|
167 |
+
# similarity scores.
|
168 |
+
# text_embeds(`torch.FloatTensor` of shape `(batch_size, output_dim`):
|
169 |
+
# The text embeddings obtained by applying the projection layer to the pooled output of [`SiglipTextModel`].
|
170 |
+
# image_embeds(`torch.FloatTensor` of shape `(batch_size, output_dim`):
|
171 |
+
# The image embeddings obtained by applying the projection layer to the pooled output of
|
172 |
+
# [`SiglipVisionModel`].
|
173 |
+
# text_model_output(`BaseModelOutputWithPooling`):
|
174 |
+
# The output of the [`SiglipTextModel`].
|
175 |
+
# vision_model_output(`BaseModelOutputWithPooling`):
|
176 |
+
# The output of the [`SiglipVisionModel`].
|
177 |
+
# """
|
178 |
+
|
179 |
+
# loss: Optional[torch.FloatTensor] = None
|
180 |
+
# logits_per_image: torch.FloatTensor = None
|
181 |
+
# logits_per_text: torch.FloatTensor = None
|
182 |
+
# text_embeds: torch.FloatTensor = None
|
183 |
+
# image_embeds: torch.FloatTensor = None
|
184 |
+
# text_model_output: BaseModelOutputWithPooling = None
|
185 |
+
# vision_model_output: BaseModelOutputWithPooling = None
|
186 |
+
|
187 |
+
# def to_tuple(self) -> Tuple[Any]:
|
188 |
+
# return tuple(
|
189 |
+
# self[k] if k not in ["text_model_output", "vision_model_output"] else getattr(self, k).to_tuple()
|
190 |
+
# for k in self.keys()
|
191 |
+
# )
|
192 |
+
|
193 |
+
|
194 |
+
class SiglipVisionEmbeddings(nn.Module):
|
195 |
+
def __init__(self, config: VMistralVisionConfig):
|
196 |
+
super().__init__()
|
197 |
+
self.config = config
|
198 |
+
self.embed_dim = config.hidden_size
|
199 |
+
self.image_size = config.image_size
|
200 |
+
self.patch_size = config.patch_size
|
201 |
+
|
202 |
+
self.patch_embedding = nn.Conv2d(
|
203 |
+
in_channels=config.num_channels,
|
204 |
+
out_channels=self.embed_dim,
|
205 |
+
kernel_size=self.patch_size,
|
206 |
+
stride=self.patch_size,
|
207 |
+
padding="valid",
|
208 |
+
)
|
209 |
+
|
210 |
+
self.num_patches = (self.image_size // self.patch_size) ** 2
|
211 |
+
self.num_positions = self.num_patches
|
212 |
+
self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim)
|
213 |
+
self.register_buffer("position_ids", torch.arange(self.num_positions).expand((1, -1)), persistent=False)
|
214 |
+
|
215 |
+
def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
|
216 |
+
patch_embeds = self.patch_embedding(pixel_values) # shape = [*, width, grid, grid]
|
217 |
+
embeddings = patch_embeds.flatten(2).transpose(1, 2)
|
218 |
+
|
219 |
+
embeddings = embeddings + self.position_embedding(self.position_ids)
|
220 |
+
return embeddings
|
221 |
+
|
222 |
+
|
223 |
+
# # Copied from transformers.models.clip.modeling_clip.CLIPTextEmbeddings with CLIP->Siglip
|
224 |
+
# class SiglipTextEmbeddings(nn.Module):
|
225 |
+
# def __init__(self, config: SiglipTextConfig):
|
226 |
+
# super().__init__()
|
227 |
+
# embed_dim = config.hidden_size
|
228 |
+
|
229 |
+
# self.token_embedding = nn.Embedding(config.vocab_size, embed_dim)
|
230 |
+
# self.position_embedding = nn.Embedding(config.max_position_embeddings, embed_dim)
|
231 |
+
|
232 |
+
# # position_ids (1, len position emb) is contiguous in memory and exported when serialized
|
233 |
+
# self.register_buffer(
|
234 |
+
# "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
|
235 |
+
# )
|
236 |
+
|
237 |
+
# def forward(
|
238 |
+
# self,
|
239 |
+
# input_ids: Optional[torch.LongTensor] = None,
|
240 |
+
# position_ids: Optional[torch.LongTensor] = None,
|
241 |
+
# inputs_embeds: Optional[torch.FloatTensor] = None,
|
242 |
+
# ) -> torch.Tensor:
|
243 |
+
# seq_length = input_ids.shape[-1] if input_ids is not None else inputs_embeds.shape[-2]
|
244 |
+
|
245 |
+
# if position_ids is None:
|
246 |
+
# position_ids = self.position_ids[:, :seq_length]
|
247 |
+
|
248 |
+
# if inputs_embeds is None:
|
249 |
+
# inputs_embeds = self.token_embedding(input_ids)
|
250 |
+
|
251 |
+
# position_embeddings = self.position_embedding(position_ids)
|
252 |
+
# embeddings = inputs_embeds + position_embeddings
|
253 |
+
|
254 |
+
# return embeddings
|
255 |
+
|
256 |
+
|
257 |
+
# Copied from transformers.models.clip.modeling_clip.CLIPAttention with CLIP->Siglip
|
258 |
+
class SiglipAttention(nn.Module):
|
259 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
260 |
+
|
261 |
+
def __init__(self, config):
|
262 |
+
super().__init__()
|
263 |
+
self.config = config
|
264 |
+
self.embed_dim = config.hidden_size
|
265 |
+
self.num_heads = config.num_attention_heads
|
266 |
+
self.head_dim = self.embed_dim // self.num_heads
|
267 |
+
if self.head_dim * self.num_heads != self.embed_dim:
|
268 |
+
raise ValueError(
|
269 |
+
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
|
270 |
+
f" {self.num_heads})."
|
271 |
+
)
|
272 |
+
self.scale = self.head_dim**-0.5
|
273 |
+
self.dropout = config.attention_dropout
|
274 |
+
|
275 |
+
self.k_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
276 |
+
self.v_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
277 |
+
self.q_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
278 |
+
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
279 |
+
|
280 |
+
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
281 |
+
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
|
282 |
+
|
283 |
+
def forward(
|
284 |
+
self,
|
285 |
+
hidden_states: torch.Tensor,
|
286 |
+
attention_mask: Optional[torch.Tensor] = None,
|
287 |
+
causal_attention_mask: Optional[torch.Tensor] = None,
|
288 |
+
output_attentions: Optional[bool] = False,
|
289 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
290 |
+
"""Input shape: Batch x Time x Channel"""
|
291 |
+
|
292 |
+
bsz, tgt_len, embed_dim = hidden_states.size()
|
293 |
+
|
294 |
+
# get query proj
|
295 |
+
query_states = self.q_proj(hidden_states) * self.scale
|
296 |
+
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
|
297 |
+
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
|
298 |
+
|
299 |
+
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
|
300 |
+
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
|
301 |
+
key_states = key_states.view(*proj_shape)
|
302 |
+
value_states = value_states.view(*proj_shape)
|
303 |
+
|
304 |
+
src_len = key_states.size(1)
|
305 |
+
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
|
306 |
+
|
307 |
+
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
|
308 |
+
raise ValueError(
|
309 |
+
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
|
310 |
+
f" {attn_weights.size()}"
|
311 |
+
)
|
312 |
+
|
313 |
+
# apply the causal_attention_mask first
|
314 |
+
if causal_attention_mask is not None:
|
315 |
+
if causal_attention_mask.size() != (bsz, 1, tgt_len, src_len):
|
316 |
+
raise ValueError(
|
317 |
+
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is"
|
318 |
+
f" {causal_attention_mask.size()}"
|
319 |
+
)
|
320 |
+
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + causal_attention_mask
|
321 |
+
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
|
322 |
+
|
323 |
+
if attention_mask is not None:
|
324 |
+
if attention_mask.size() != (bsz, 1, tgt_len, src_len):
|
325 |
+
raise ValueError(
|
326 |
+
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
|
327 |
+
)
|
328 |
+
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
|
329 |
+
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
|
330 |
+
|
331 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
|
332 |
+
|
333 |
+
if output_attentions:
|
334 |
+
# this operation is a bit akward, but it's required to
|
335 |
+
# make sure that attn_weights keeps its gradient.
|
336 |
+
# In order to do so, attn_weights have to reshaped
|
337 |
+
# twice and have to be reused in the following
|
338 |
+
attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
|
339 |
+
attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
|
340 |
+
else:
|
341 |
+
attn_weights_reshaped = None
|
342 |
+
|
343 |
+
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
|
344 |
+
|
345 |
+
attn_output = torch.bmm(attn_probs, value_states)
|
346 |
+
|
347 |
+
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
|
348 |
+
raise ValueError(
|
349 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
|
350 |
+
f" {attn_output.size()}"
|
351 |
+
)
|
352 |
+
|
353 |
+
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
|
354 |
+
attn_output = attn_output.transpose(1, 2)
|
355 |
+
attn_output = attn_output.reshape(bsz, tgt_len, embed_dim)
|
356 |
+
|
357 |
+
attn_output = self.out_proj(attn_output)
|
358 |
+
|
359 |
+
return attn_output, attn_weights_reshaped
|
360 |
+
|
361 |
+
|
362 |
+
class SiglipFlashAttention2(SiglipAttention):
|
363 |
+
"""
|
364 |
+
Llama flash attention module. This module inherits from `LlamaAttention` as the weights of the module stays
|
365 |
+
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
|
366 |
+
flash attention and deal with padding tokens in case the input contains any of them.
|
367 |
+
"""
|
368 |
+
|
369 |
+
def __init__(self, *args, **kwargs):
|
370 |
+
super().__init__(*args, **kwargs)
|
371 |
+
self.is_causal = False # Hack to make sure we don't use a causal mask
|
372 |
+
|
373 |
+
def forward(
|
374 |
+
self,
|
375 |
+
hidden_states: torch.Tensor,
|
376 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
377 |
+
position_ids: Optional[torch.LongTensor] = None,
|
378 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
379 |
+
output_attentions: bool = False,
|
380 |
+
use_cache: bool = False,
|
381 |
+
**kwargs,
|
382 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
383 |
+
output_attentions = False
|
384 |
+
|
385 |
+
bsz, q_len, _ = hidden_states.size()
|
386 |
+
|
387 |
+
query_states = self.q_proj(hidden_states)
|
388 |
+
key_states = self.k_proj(hidden_states)
|
389 |
+
value_states = self.v_proj(hidden_states)
|
390 |
+
|
391 |
+
# Flash attention requires the input to have the shape
|
392 |
+
# batch_size x seq_length x head_dim x hidden_dim
|
393 |
+
# therefore we just need to keep the original shape
|
394 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
395 |
+
key_states = key_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
396 |
+
value_states = value_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
397 |
+
|
398 |
+
kv_seq_len = key_states.shape[-2]
|
399 |
+
if past_key_value is not None:
|
400 |
+
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
401 |
+
# cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
402 |
+
# query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
403 |
+
|
404 |
+
# if past_key_value is not None:
|
405 |
+
# cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
|
406 |
+
# key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
407 |
+
|
408 |
+
# TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
|
409 |
+
# to be able to avoid many of these transpose/reshape/view.
|
410 |
+
query_states = query_states.transpose(1, 2)
|
411 |
+
key_states = key_states.transpose(1, 2)
|
412 |
+
value_states = value_states.transpose(1, 2)
|
413 |
+
|
414 |
+
dropout_rate = self.dropout if self.training else 0.0
|
415 |
+
|
416 |
+
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
|
417 |
+
# therefore the input hidden states gets silently casted in float32. Hence, we need
|
418 |
+
# cast them back in the correct dtype just to be sure everything works as expected.
|
419 |
+
# This might slowdown training & inference so it is recommended to not cast the LayerNorms
|
420 |
+
# in fp32. (LlamaRMSNorm handles it correctly)
|
421 |
+
|
422 |
+
input_dtype = query_states.dtype
|
423 |
+
if input_dtype == torch.float32:
|
424 |
+
if torch.is_autocast_enabled():
|
425 |
+
target_dtype = torch.get_autocast_gpu_dtype()
|
426 |
+
# Handle the case where the model is quantized
|
427 |
+
elif hasattr(self.config, "_pre_quantization_dtype"):
|
428 |
+
target_dtype = self.config._pre_quantization_dtype
|
429 |
+
else:
|
430 |
+
target_dtype = self.q_proj.weight.dtype
|
431 |
+
|
432 |
+
logger.warning_once(
|
433 |
+
"The input hidden states seems to be silently casted in float32, this might be related to the fact"
|
434 |
+
" you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
|
435 |
+
f" {target_dtype}."
|
436 |
+
)
|
437 |
+
|
438 |
+
query_states = query_states.to(target_dtype)
|
439 |
+
key_states = key_states.to(target_dtype)
|
440 |
+
value_states = value_states.to(target_dtype)
|
441 |
+
|
442 |
+
attn_output = self._flash_attention_forward(
|
443 |
+
query_states, key_states, value_states, attention_mask, q_len, dropout=dropout_rate
|
444 |
+
)
|
445 |
+
|
446 |
+
attn_output = attn_output.reshape(bsz, q_len, self.embed_dim).contiguous()
|
447 |
+
attn_output = self.out_proj(attn_output)
|
448 |
+
|
449 |
+
if not output_attentions:
|
450 |
+
attn_weights = None
|
451 |
+
|
452 |
+
return attn_output, attn_weights
|
453 |
+
|
454 |
+
def _flash_attention_forward(
|
455 |
+
self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
|
456 |
+
):
|
457 |
+
"""
|
458 |
+
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
|
459 |
+
first unpad the input, then computes the attention scores and pad the final attention scores.
|
460 |
+
|
461 |
+
Args:
|
462 |
+
query_states (`torch.Tensor`):
|
463 |
+
Input query states to be passed to Flash Attention API
|
464 |
+
key_states (`torch.Tensor`):
|
465 |
+
Input key states to be passed to Flash Attention API
|
466 |
+
value_states (`torch.Tensor`):
|
467 |
+
Input value states to be passed to Flash Attention API
|
468 |
+
attention_mask (`torch.Tensor`):
|
469 |
+
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
|
470 |
+
position of padding tokens and 1 for the position of non-padding tokens.
|
471 |
+
dropout (`int`, *optional*):
|
472 |
+
Attention dropout
|
473 |
+
softmax_scale (`float`, *optional*):
|
474 |
+
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
|
475 |
+
"""
|
476 |
+
|
477 |
+
# TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
|
478 |
+
causal = self.is_causal and query_length != 1
|
479 |
+
|
480 |
+
# Contains at least one padding token in the sequence
|
481 |
+
if attention_mask is not None:
|
482 |
+
batch_size = query_states.shape[0]
|
483 |
+
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
|
484 |
+
query_states, key_states, value_states, attention_mask, query_length
|
485 |
+
)
|
486 |
+
|
487 |
+
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
|
488 |
+
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
|
489 |
+
|
490 |
+
attn_output_unpad = flash_attn_varlen_func(
|
491 |
+
query_states,
|
492 |
+
key_states,
|
493 |
+
value_states,
|
494 |
+
cu_seqlens_q=cu_seqlens_q,
|
495 |
+
cu_seqlens_k=cu_seqlens_k,
|
496 |
+
max_seqlen_q=max_seqlen_in_batch_q,
|
497 |
+
max_seqlen_k=max_seqlen_in_batch_k,
|
498 |
+
dropout_p=dropout,
|
499 |
+
softmax_scale=softmax_scale,
|
500 |
+
causal=causal,
|
501 |
+
)
|
502 |
+
|
503 |
+
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
|
504 |
+
else:
|
505 |
+
attn_output = flash_attn_func(
|
506 |
+
query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal
|
507 |
+
)
|
508 |
+
|
509 |
+
return attn_output
|
510 |
+
|
511 |
+
def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
|
512 |
+
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
|
513 |
+
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
|
514 |
+
|
515 |
+
key_layer = index_first_axis(
|
516 |
+
key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
517 |
+
)
|
518 |
+
value_layer = index_first_axis(
|
519 |
+
value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
520 |
+
)
|
521 |
+
if query_length == kv_seq_len:
|
522 |
+
query_layer = index_first_axis(
|
523 |
+
query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
|
524 |
+
)
|
525 |
+
cu_seqlens_q = cu_seqlens_k
|
526 |
+
max_seqlen_in_batch_q = max_seqlen_in_batch_k
|
527 |
+
indices_q = indices_k
|
528 |
+
elif query_length == 1:
|
529 |
+
max_seqlen_in_batch_q = 1
|
530 |
+
cu_seqlens_q = torch.arange(
|
531 |
+
batch_size + 1, dtype=torch.int32, device=query_layer.device
|
532 |
+
) # There is a memcpy here, that is very bad.
|
533 |
+
indices_q = cu_seqlens_q[:-1]
|
534 |
+
query_layer = query_layer.squeeze(1)
|
535 |
+
else:
|
536 |
+
# The -q_len: slice assumes left padding.
|
537 |
+
attention_mask = attention_mask[:, -query_length:]
|
538 |
+
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
|
539 |
+
|
540 |
+
return (
|
541 |
+
query_layer,
|
542 |
+
key_layer,
|
543 |
+
value_layer,
|
544 |
+
indices_q,
|
545 |
+
(cu_seqlens_q, cu_seqlens_k),
|
546 |
+
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
|
547 |
+
)
|
548 |
+
|
549 |
+
|
550 |
+
# Copied from transformers.models.clip.modeling_clip.CLIPMLP with CLIP->Siglip
|
551 |
+
class SiglipMLP(nn.Module):
|
552 |
+
def __init__(self, config):
|
553 |
+
super().__init__()
|
554 |
+
self.config = config
|
555 |
+
self.activation_fn = ACT2FN[config.hidden_act]
|
556 |
+
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
|
557 |
+
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
|
558 |
+
|
559 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
560 |
+
hidden_states = self.fc1(hidden_states)
|
561 |
+
hidden_states = self.activation_fn(hidden_states)
|
562 |
+
hidden_states = self.fc2(hidden_states)
|
563 |
+
return hidden_states
|
564 |
+
|
565 |
+
|
566 |
+
# Copied from transformers.models.clip.modeling_clip.CLIPEncoderLayer with CLIP->Siglip
|
567 |
+
class SiglipEncoderLayer(nn.Module):
|
568 |
+
def __init__(self, config: VMistralVisionConfig):
|
569 |
+
super().__init__()
|
570 |
+
self.embed_dim = config.hidden_size
|
571 |
+
self.self_attn = (
|
572 |
+
SiglipAttention(config)
|
573 |
+
if not getattr(config, "_flash_attn_2_enabled", False)
|
574 |
+
else SiglipFlashAttention2(config)
|
575 |
+
)
|
576 |
+
self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
|
577 |
+
self.mlp = SiglipMLP(config)
|
578 |
+
self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
|
579 |
+
|
580 |
+
def forward(
|
581 |
+
self,
|
582 |
+
hidden_states: torch.Tensor,
|
583 |
+
attention_mask: torch.Tensor,
|
584 |
+
causal_attention_mask: torch.Tensor,
|
585 |
+
output_attentions: Optional[bool] = False,
|
586 |
+
) -> Tuple[torch.FloatTensor]:
|
587 |
+
"""
|
588 |
+
Args:
|
589 |
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
590 |
+
attention_mask (`torch.FloatTensor`): attention mask of size
|
591 |
+
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
|
592 |
+
`(config.encoder_attention_heads,)`.
|
593 |
+
output_attentions (`bool`, *optional*):
|
594 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
595 |
+
returned tensors for more detail.
|
596 |
+
"""
|
597 |
+
residual = hidden_states
|
598 |
+
|
599 |
+
hidden_states = self.layer_norm1(hidden_states)
|
600 |
+
hidden_states, attn_weights = self.self_attn(
|
601 |
+
hidden_states=hidden_states,
|
602 |
+
attention_mask=attention_mask,
|
603 |
+
causal_attention_mask=causal_attention_mask,
|
604 |
+
output_attentions=output_attentions,
|
605 |
+
)
|
606 |
+
hidden_states = residual + hidden_states
|
607 |
+
|
608 |
+
residual = hidden_states
|
609 |
+
hidden_states = self.layer_norm2(hidden_states)
|
610 |
+
hidden_states = self.mlp(hidden_states)
|
611 |
+
hidden_states = residual + hidden_states
|
612 |
+
|
613 |
+
outputs = (hidden_states,)
|
614 |
+
|
615 |
+
if output_attentions:
|
616 |
+
outputs += (attn_weights,)
|
617 |
+
|
618 |
+
return outputs
|
619 |
+
|
620 |
+
|
621 |
+
# class SiglipPreTrainedModel(PreTrainedModel):
|
622 |
+
# """
|
623 |
+
# An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
624 |
+
# models.
|
625 |
+
# """
|
626 |
+
|
627 |
+
# config_class = SiglipConfig
|
628 |
+
# base_model_prefix = "siglip"
|
629 |
+
# supports_gradient_checkpointing = True
|
630 |
+
|
631 |
+
# def _init_weights(self, module):
|
632 |
+
# """Initialize the weights"""
|
633 |
+
# factor = self.config.initializer_factor
|
634 |
+
# if isinstance(module, SiglipVisionEmbeddings):
|
635 |
+
# factor = self.config.initializer_factor
|
636 |
+
# nn.init.normal_(module.patch_embedding.weight, std=module.config.initializer_range * factor)
|
637 |
+
# nn.init.normal_(module.position_embedding.weight, std=module.config.initializer_range * factor)
|
638 |
+
# elif isinstance(module, SiglipAttention):
|
639 |
+
# factor = self.config.initializer_factor
|
640 |
+
# in_proj_std = (module.embed_dim**-0.5) * ((2 * module.config.num_hidden_layers) ** -0.5) * factor
|
641 |
+
# out_proj_std = (module.embed_dim**-0.5) * factor
|
642 |
+
# nn.init.normal_(module.q_proj.weight, std=in_proj_std)
|
643 |
+
# nn.init.normal_(module.k_proj.weight, std=in_proj_std)
|
644 |
+
# nn.init.normal_(module.v_proj.weight, std=in_proj_std)
|
645 |
+
# nn.init.normal_(module.out_proj.weight, std=out_proj_std)
|
646 |
+
# elif isinstance(module, SiglipMLP):
|
647 |
+
# factor = self.config.initializer_factor
|
648 |
+
# in_proj_std = (
|
649 |
+
# (module.config.hidden_size**-0.5) * ((2 * module.config.num_hidden_layers) ** -0.5) * factor
|
650 |
+
# )
|
651 |
+
# fc_std = (2 * module.config.hidden_size) ** -0.5 * factor
|
652 |
+
# nn.init.normal_(module.fc1.weight, std=fc_std)
|
653 |
+
# nn.init.normal_(module.fc2.weight, std=in_proj_std)
|
654 |
+
# if isinstance(module, nn.LayerNorm):
|
655 |
+
# module.bias.data.zero_()
|
656 |
+
# module.weight.data.fill_(1.0)
|
657 |
+
# if isinstance(module, nn.Linear) and module.bias is not None:
|
658 |
+
# module.bias.data.zero_()
|
659 |
+
|
660 |
+
# def _set_gradient_checkpointing(self, module, value=False):
|
661 |
+
# if isinstance(module, SiglipEncoder):
|
662 |
+
# module.gradient_checkpointing = value
|
663 |
+
|
664 |
+
|
665 |
+
# SIGLIP_START_DOCSTRING = r"""
|
666 |
+
# This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
667 |
+
# library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
668 |
+
# etc.)
|
669 |
+
|
670 |
+
# This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
671 |
+
# Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
672 |
+
# and behavior.
|
673 |
+
|
674 |
+
# Parameters:
|
675 |
+
# config ([`SiglipConfig`]): Model configuration class with all the parameters of the model.
|
676 |
+
# Initializing with a config file does not load the weights associated with the model, only the
|
677 |
+
# configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
678 |
+
# """
|
679 |
+
|
680 |
+
# SIGLIP_TEXT_INPUTS_DOCSTRING = r"""
|
681 |
+
# Args:
|
682 |
+
# input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
683 |
+
# Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
684 |
+
# it.
|
685 |
+
|
686 |
+
# Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
687 |
+
# [`PreTrainedTokenizer.__call__`] for details.
|
688 |
+
|
689 |
+
# [What are input IDs?](../glossary#input-ids)
|
690 |
+
# attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
691 |
+
# Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
692 |
+
|
693 |
+
# - 1 for tokens that are **not masked**,
|
694 |
+
# - 0 for tokens that are **masked**.
|
695 |
+
|
696 |
+
# [What are attention masks?](../glossary#attention-mask)
|
697 |
+
# position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
698 |
+
# Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
699 |
+
# config.max_position_embeddings - 1]`.
|
700 |
+
|
701 |
+
# [What are position IDs?](../glossary#position-ids)
|
702 |
+
# output_attentions (`bool`, *optional*):
|
703 |
+
# Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
704 |
+
# tensors for more detail.
|
705 |
+
# output_hidden_states (`bool`, *optional*):
|
706 |
+
# Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
707 |
+
# more detail.
|
708 |
+
# return_dict (`bool`, *optional*):
|
709 |
+
# Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
710 |
+
# """
|
711 |
+
|
712 |
+
# SIGLIP_VISION_INPUTS_DOCSTRING = r"""
|
713 |
+
# Args:
|
714 |
+
# pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
715 |
+
# Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using
|
716 |
+
# [`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details.
|
717 |
+
# output_attentions (`bool`, *optional*):
|
718 |
+
# Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
719 |
+
# tensors for more detail.
|
720 |
+
# output_hidden_states (`bool`, *optional*):
|
721 |
+
# Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
722 |
+
# more detail.
|
723 |
+
# return_dict (`bool`, *optional*):
|
724 |
+
# Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
725 |
+
# """
|
726 |
+
|
727 |
+
# SIGLIP_INPUTS_DOCSTRING = r"""
|
728 |
+
# Args:
|
729 |
+
# input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
730 |
+
# Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
731 |
+
# it.
|
732 |
+
|
733 |
+
# Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
734 |
+
# [`PreTrainedTokenizer.__call__`] for details.
|
735 |
+
|
736 |
+
# [What are input IDs?](../glossary#input-ids)
|
737 |
+
# attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
738 |
+
# Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
739 |
+
|
740 |
+
# - 1 for tokens that are **not masked**,
|
741 |
+
# - 0 for tokens that are **masked**.
|
742 |
+
|
743 |
+
# [What are attention masks?](../glossary#attention-mask)
|
744 |
+
# position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
745 |
+
# Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
746 |
+
# config.max_position_embeddings - 1]`.
|
747 |
+
|
748 |
+
# [What are position IDs?](../glossary#position-ids)
|
749 |
+
# pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
750 |
+
# Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using
|
751 |
+
# [`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details.
|
752 |
+
# return_loss (`bool`, *optional*):
|
753 |
+
# Whether or not to return the contrastive loss.
|
754 |
+
# output_attentions (`bool`, *optional*):
|
755 |
+
# Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
756 |
+
# tensors for more detail.
|
757 |
+
# output_hidden_states (`bool`, *optional*):
|
758 |
+
# Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
759 |
+
# more detail.
|
760 |
+
# return_dict (`bool`, *optional*):
|
761 |
+
# Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
762 |
+
# """
|
763 |
+
|
764 |
+
|
765 |
+
# Copied from transformers.models.clip.modeling_clip.CLIPEncoder with CLIP->Siglip
|
766 |
+
class SiglipEncoder(nn.Module):
|
767 |
+
"""
|
768 |
+
Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
|
769 |
+
[`SiglipEncoderLayer`].
|
770 |
+
|
771 |
+
Args:
|
772 |
+
config: SiglipConfig
|
773 |
+
"""
|
774 |
+
|
775 |
+
def __init__(self, config):
|
776 |
+
super().__init__()
|
777 |
+
self.config = config
|
778 |
+
self.layers = nn.ModuleList([SiglipEncoderLayer(config) for _ in range(config.num_hidden_layers)])
|
779 |
+
self.gradient_checkpointing = False
|
780 |
+
|
781 |
+
def forward(
|
782 |
+
self,
|
783 |
+
inputs_embeds,
|
784 |
+
attention_mask: Optional[torch.Tensor] = None,
|
785 |
+
causal_attention_mask: Optional[torch.Tensor] = None,
|
786 |
+
output_attentions: Optional[bool] = None,
|
787 |
+
output_hidden_states: Optional[bool] = None,
|
788 |
+
return_dict: Optional[bool] = None,
|
789 |
+
) -> Union[Tuple, BaseModelOutput]:
|
790 |
+
r"""
|
791 |
+
Args:
|
792 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
793 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
|
794 |
+
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
|
795 |
+
than the model's internal embedding lookup matrix.
|
796 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
797 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
798 |
+
|
799 |
+
- 1 for tokens that are **not masked**,
|
800 |
+
- 0 for tokens that are **masked**.
|
801 |
+
|
802 |
+
[What are attention masks?](../glossary#attention-mask)
|
803 |
+
causal_attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
804 |
+
Causal mask for the text model. Mask values selected in `[0, 1]`:
|
805 |
+
|
806 |
+
- 1 for tokens that are **not masked**,
|
807 |
+
- 0 for tokens that are **masked**.
|
808 |
+
|
809 |
+
[What are attention masks?](../glossary#attention-mask)
|
810 |
+
output_attentions (`bool`, *optional*):
|
811 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
812 |
+
returned tensors for more detail.
|
813 |
+
output_hidden_states (`bool`, *optional*):
|
814 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
|
815 |
+
for more detail.
|
816 |
+
return_dict (`bool`, *optional*):
|
817 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
818 |
+
"""
|
819 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
820 |
+
output_hidden_states = (
|
821 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
822 |
+
)
|
823 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
824 |
+
|
825 |
+
encoder_states = () if output_hidden_states else None
|
826 |
+
all_attentions = () if output_attentions else None
|
827 |
+
|
828 |
+
hidden_states = inputs_embeds
|
829 |
+
for idx, encoder_layer in enumerate(self.layers):
|
830 |
+
if output_hidden_states:
|
831 |
+
encoder_states = encoder_states + (hidden_states,)
|
832 |
+
if self.gradient_checkpointing and self.training:
|
833 |
+
|
834 |
+
def create_custom_forward(module):
|
835 |
+
def custom_forward(*inputs):
|
836 |
+
return module(*inputs, output_attentions)
|
837 |
+
|
838 |
+
return custom_forward
|
839 |
+
|
840 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(
|
841 |
+
create_custom_forward(encoder_layer),
|
842 |
+
hidden_states,
|
843 |
+
attention_mask,
|
844 |
+
causal_attention_mask,
|
845 |
+
)
|
846 |
+
else:
|
847 |
+
layer_outputs = encoder_layer(
|
848 |
+
hidden_states,
|
849 |
+
attention_mask,
|
850 |
+
causal_attention_mask,
|
851 |
+
output_attentions=output_attentions,
|
852 |
+
)
|
853 |
+
|
854 |
+
hidden_states = layer_outputs[0]
|
855 |
+
|
856 |
+
if output_attentions:
|
857 |
+
all_attentions = all_attentions + (layer_outputs[1],)
|
858 |
+
|
859 |
+
if output_hidden_states:
|
860 |
+
encoder_states = encoder_states + (hidden_states,)
|
861 |
+
|
862 |
+
if not return_dict:
|
863 |
+
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
|
864 |
+
return BaseModelOutput(
|
865 |
+
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
|
866 |
+
)
|
867 |
+
|
868 |
+
|
869 |
+
# class SiglipTextTransformer(nn.Module):
|
870 |
+
# def __init__(self, config: SiglipTextConfig):
|
871 |
+
# super().__init__()
|
872 |
+
# self.config = config
|
873 |
+
# embed_dim = config.hidden_size
|
874 |
+
# self.embeddings = SiglipTextEmbeddings(config)
|
875 |
+
# self.encoder = SiglipEncoder(config)
|
876 |
+
# self.final_layer_norm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
|
877 |
+
|
878 |
+
# self.head = nn.Linear(embed_dim, embed_dim)
|
879 |
+
|
880 |
+
# @add_start_docstrings_to_model_forward(SIGLIP_TEXT_INPUTS_DOCSTRING)
|
881 |
+
# @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=SiglipTextConfig)
|
882 |
+
# def forward(
|
883 |
+
# self,
|
884 |
+
# input_ids: Optional[torch.Tensor] = None,
|
885 |
+
# attention_mask: Optional[torch.Tensor] = None,
|
886 |
+
# position_ids: Optional[torch.Tensor] = None,
|
887 |
+
# output_attentions: Optional[bool] = None,
|
888 |
+
# output_hidden_states: Optional[bool] = None,
|
889 |
+
# return_dict: Optional[bool] = None,
|
890 |
+
# ) -> Union[Tuple, BaseModelOutputWithPooling]:
|
891 |
+
# r"""
|
892 |
+
# Returns:
|
893 |
+
|
894 |
+
# """
|
895 |
+
# output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
896 |
+
# output_hidden_states = (
|
897 |
+
# output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
898 |
+
# )
|
899 |
+
# return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
900 |
+
|
901 |
+
# if input_ids is None:
|
902 |
+
# raise ValueError("You have to specify input_ids")
|
903 |
+
|
904 |
+
# input_shape = input_ids.size()
|
905 |
+
# input_ids = input_ids.view(-1, input_shape[-1])
|
906 |
+
|
907 |
+
# hidden_states = self.embeddings(input_ids=input_ids, position_ids=position_ids)
|
908 |
+
|
909 |
+
# # note: SigLIP's text model does not use q causal mask, unlike the original CLIP model.
|
910 |
+
# # expand attention_mask
|
911 |
+
# if attention_mask is not None:
|
912 |
+
# # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
913 |
+
# attention_mask = _expand_mask(attention_mask, hidden_states.dtype)
|
914 |
+
|
915 |
+
# encoder_outputs = self.encoder(
|
916 |
+
# inputs_embeds=hidden_states,
|
917 |
+
# attention_mask=None,
|
918 |
+
# causal_attention_mask=None,
|
919 |
+
# output_attentions=output_attentions,
|
920 |
+
# output_hidden_states=output_hidden_states,
|
921 |
+
# return_dict=return_dict,
|
922 |
+
# )
|
923 |
+
|
924 |
+
# last_hidden_state = encoder_outputs[0]
|
925 |
+
# last_hidden_state = self.final_layer_norm(last_hidden_state)
|
926 |
+
|
927 |
+
# # Assuming "sticky" EOS tokenization, last token is always EOS.
|
928 |
+
# pooled_output = last_hidden_state[:, -1, :]
|
929 |
+
# pooled_output = self.head(pooled_output)
|
930 |
+
|
931 |
+
# if not return_dict:
|
932 |
+
# return (last_hidden_state, pooled_output) + encoder_outputs[1:]
|
933 |
+
|
934 |
+
# return BaseModelOutputWithPooling(
|
935 |
+
# last_hidden_state=last_hidden_state,
|
936 |
+
# pooler_output=pooled_output,
|
937 |
+
# hidden_states=encoder_outputs.hidden_states,
|
938 |
+
# attentions=encoder_outputs.attentions,
|
939 |
+
# )
|
940 |
+
|
941 |
+
|
942 |
+
# @add_start_docstrings(
|
943 |
+
# """The text model from SigLIP without any head or projection on top.""",
|
944 |
+
# SIGLIP_START_DOCSTRING,
|
945 |
+
# )
|
946 |
+
# class SiglipTextModel(SiglipPreTrainedModel):
|
947 |
+
# config_class = SiglipTextConfig
|
948 |
+
|
949 |
+
# _no_split_modules = ["SiglipTextEmbeddings", "SiglipEncoderLayer"]
|
950 |
+
|
951 |
+
# def __init__(self, config: SiglipTextConfig):
|
952 |
+
# super().__init__(config)
|
953 |
+
# self.text_model = SiglipTextTransformer(config)
|
954 |
+
# # Initialize weights and apply final processing
|
955 |
+
# self.post_init()
|
956 |
+
|
957 |
+
# def get_input_embeddings(self) -> nn.Module:
|
958 |
+
# return self.text_model.embeddings.token_embedding
|
959 |
+
|
960 |
+
# def set_input_embeddings(self, value):
|
961 |
+
# self.text_model.embeddings.token_embedding = value
|
962 |
+
|
963 |
+
# @add_start_docstrings_to_model_forward(SIGLIP_TEXT_INPUTS_DOCSTRING)
|
964 |
+
# @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=SiglipTextConfig)
|
965 |
+
# def forward(
|
966 |
+
# self,
|
967 |
+
# input_ids: Optional[torch.Tensor] = None,
|
968 |
+
# attention_mask: Optional[torch.Tensor] = None,
|
969 |
+
# position_ids: Optional[torch.Tensor] = None,
|
970 |
+
# output_attentions: Optional[bool] = None,
|
971 |
+
# output_hidden_states: Optional[bool] = None,
|
972 |
+
# return_dict: Optional[bool] = None,
|
973 |
+
# ) -> Union[Tuple, BaseModelOutputWithPooling]:
|
974 |
+
# r"""
|
975 |
+
# Returns:
|
976 |
+
|
977 |
+
# Examples:
|
978 |
+
|
979 |
+
# ```python
|
980 |
+
# >>> from transformers import AutoTokenizer, SiglipTextModel
|
981 |
+
|
982 |
+
# >>> model = SiglipTextModel.from_pretrained("google/siglip-base-patch16-224")
|
983 |
+
# >>> tokenizer = AutoTokenizer.from_pretrained("google/siglip-base-patch16-224")
|
984 |
+
|
985 |
+
# >>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="pt")
|
986 |
+
|
987 |
+
# >>> outputs = model(**inputs)
|
988 |
+
# >>> last_hidden_state = outputs.last_hidden_state
|
989 |
+
# >>> pooled_output = outputs.pooler_output # pooled (EOS token) states
|
990 |
+
# ```"""
|
991 |
+
# return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
992 |
+
|
993 |
+
# return self.text_model(
|
994 |
+
# input_ids=input_ids,
|
995 |
+
# attention_mask=attention_mask,
|
996 |
+
# position_ids=position_ids,
|
997 |
+
# output_attentions=output_attentions,
|
998 |
+
# output_hidden_states=output_hidden_states,
|
999 |
+
# return_dict=return_dict,
|
1000 |
+
# )
|
1001 |
+
|
1002 |
+
|
1003 |
+
class SiglipVisionTransformer(nn.Module):
|
1004 |
+
def __init__(self, config: VMistralVisionConfig):
|
1005 |
+
super().__init__()
|
1006 |
+
self.config = config
|
1007 |
+
embed_dim = config.hidden_size
|
1008 |
+
|
1009 |
+
self.embeddings = SiglipVisionEmbeddings(config)
|
1010 |
+
self.encoder = SiglipEncoder(config)
|
1011 |
+
self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
|
1012 |
+
self.head = SiglipMultiheadAttentionPoolingHead(config)
|
1013 |
+
|
1014 |
+
# @add_start_docstrings_to_model_forward(SIGLIP_VISION_INPUTS_DOCSTRING)
|
1015 |
+
# @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=VMistralVisionConfig)
|
1016 |
+
def forward(
|
1017 |
+
self,
|
1018 |
+
pixel_values,
|
1019 |
+
output_attentions: Optional[bool] = None,
|
1020 |
+
output_hidden_states: Optional[bool] = None,
|
1021 |
+
return_dict: Optional[bool] = None,
|
1022 |
+
) -> Union[Tuple, BaseModelOutputWithPooling]:
|
1023 |
+
r"""
|
1024 |
+
Returns:
|
1025 |
+
|
1026 |
+
"""
|
1027 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1028 |
+
output_hidden_states = (
|
1029 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1030 |
+
)
|
1031 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1032 |
+
|
1033 |
+
hidden_states = self.embeddings(pixel_values)
|
1034 |
+
|
1035 |
+
encoder_outputs = self.encoder(
|
1036 |
+
inputs_embeds=hidden_states,
|
1037 |
+
output_attentions=output_attentions,
|
1038 |
+
output_hidden_states=output_hidden_states,
|
1039 |
+
return_dict=return_dict,
|
1040 |
+
)
|
1041 |
+
|
1042 |
+
last_hidden_state = encoder_outputs[0]
|
1043 |
+
last_hidden_state = self.post_layernorm(last_hidden_state)
|
1044 |
+
|
1045 |
+
pooled_output = self.head(last_hidden_state)
|
1046 |
+
|
1047 |
+
if not return_dict:
|
1048 |
+
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
|
1049 |
+
|
1050 |
+
return BaseModelOutputWithPooling(
|
1051 |
+
last_hidden_state=last_hidden_state,
|
1052 |
+
pooler_output=pooled_output,
|
1053 |
+
hidden_states=encoder_outputs.hidden_states,
|
1054 |
+
attentions=encoder_outputs.attentions,
|
1055 |
+
)
|
1056 |
+
|
1057 |
+
|
1058 |
+
class SiglipMultiheadAttentionPoolingHead(nn.Module):
|
1059 |
+
"""Multihead Attention Pooling."""
|
1060 |
+
|
1061 |
+
def __init__(self, config: VMistralVisionConfig):
|
1062 |
+
super().__init__()
|
1063 |
+
|
1064 |
+
self.probe = nn.Parameter(torch.randn(1, 1, config.hidden_size))
|
1065 |
+
self.attention = torch.nn.MultiheadAttention(config.hidden_size, config.num_attention_heads, batch_first=True)
|
1066 |
+
self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
1067 |
+
self.mlp = SiglipMLP(config)
|
1068 |
+
|
1069 |
+
def forward(self, hidden_state):
|
1070 |
+
batch_size = hidden_state.shape[0]
|
1071 |
+
probe = self.probe.repeat(batch_size, 1, 1)
|
1072 |
+
|
1073 |
+
hidden_state = self.attention(probe, hidden_state, hidden_state)[0]
|
1074 |
+
|
1075 |
+
residual = hidden_state
|
1076 |
+
hidden_state = self.layernorm(hidden_state)
|
1077 |
+
hidden_state = residual + self.mlp(hidden_state)
|
1078 |
+
|
1079 |
+
return hidden_state[:, 0]
|
1080 |
+
|
1081 |
+
|
1082 |
+
# @add_start_docstrings(
|
1083 |
+
# """The vision model from SigLIP without any head or projection on top.""",
|
1084 |
+
# SIGLIP_START_DOCSTRING,
|
1085 |
+
# )
|
1086 |
+
class SiglipVisionModel(nn.Module):
|
1087 |
+
def __init__(self, config: VMistralVisionConfig):
|
1088 |
+
super().__init__()
|
1089 |
+
|
1090 |
+
self.vision_model = SiglipVisionTransformer(config)
|
1091 |
+
|
1092 |
+
# # Initialize weights and apply final processing
|
1093 |
+
# self.post_init()
|
1094 |
+
|
1095 |
+
# def get_input_embeddings(self) -> nn.Module:
|
1096 |
+
# return self.vision_model.embeddings.patch_embedding
|
1097 |
+
|
1098 |
+
# @add_start_docstrings_to_model_forward(SIGLIP_VISION_INPUTS_DOCSTRING)
|
1099 |
+
# @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=VMistralVisionConfig)
|
1100 |
+
def forward(
|
1101 |
+
self,
|
1102 |
+
pixel_values,
|
1103 |
+
output_attentions: Optional[bool] = None,
|
1104 |
+
output_hidden_states: Optional[bool] = None,
|
1105 |
+
return_dict: Optional[bool] = None,
|
1106 |
+
) -> Union[Tuple, BaseModelOutputWithPooling]:
|
1107 |
+
# r"""
|
1108 |
+
# Returns:
|
1109 |
+
|
1110 |
+
# Examples:
|
1111 |
+
|
1112 |
+
# ```python
|
1113 |
+
# >>> from PIL import Image
|
1114 |
+
# >>> import requests
|
1115 |
+
# >>> from transformers import AutoProcessor, SiglipVisionModel
|
1116 |
+
|
1117 |
+
# >>> model = SiglipVisionModel.from_pretrained("google/siglip-base-patch16-224")
|
1118 |
+
# >>> processor = AutoProcessor.from_pretrained("google/siglip-base-patch16-224")
|
1119 |
+
|
1120 |
+
# >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
1121 |
+
# >>> image = Image.open(requests.get(url, stream=True).raw)
|
1122 |
+
|
1123 |
+
# >>> inputs = processor(images=image, return_tensors="pt")
|
1124 |
+
|
1125 |
+
# >>> outputs = model(**inputs)
|
1126 |
+
# >>> last_hidden_state = outputs.last_hidden_state
|
1127 |
+
# >>> pooled_output = outputs.pooler_output # pooled CLS states
|
1128 |
+
# ```"""
|
1129 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1130 |
+
|
1131 |
+
return self.vision_model(
|
1132 |
+
pixel_values=pixel_values,
|
1133 |
+
output_attentions=output_attentions,
|
1134 |
+
output_hidden_states=output_hidden_states,
|
1135 |
+
return_dict=return_dict,
|
1136 |
+
)
|
1137 |
+
|
1138 |
+
|
1139 |
+
# @add_start_docstrings(SIGLIP_START_DOCSTRING)
|
1140 |
+
# class SiglipModel(SiglipPreTrainedModel):
|
1141 |
+
# config_class = SiglipConfig
|
1142 |
+
|
1143 |
+
# def __init__(self, config: SiglipConfig):
|
1144 |
+
# super().__init__(config)
|
1145 |
+
|
1146 |
+
# if not isinstance(config.text_config, SiglipTextConfig):
|
1147 |
+
# raise ValueError(
|
1148 |
+
# "config.text_config is expected to be of type SiglipTextConfig but is of type"
|
1149 |
+
# f" {type(config.text_config)}."
|
1150 |
+
# )
|
1151 |
+
|
1152 |
+
# if not isinstance(config.vision_config, SiglipVisionConfig):
|
1153 |
+
# raise ValueError(
|
1154 |
+
# "config.vision_config is expected to be of type SiglipVisionConfig but is of type"
|
1155 |
+
# f" {type(config.vision_config)}."
|
1156 |
+
# )
|
1157 |
+
|
1158 |
+
# text_config = config.text_config
|
1159 |
+
# vision_config = config.vision_config
|
1160 |
+
|
1161 |
+
# self.text_model = SiglipTextModel(text_config)
|
1162 |
+
# self.vision_model = SiglipVisionModel(vision_config)
|
1163 |
+
|
1164 |
+
# self.temperature = nn.Parameter(
|
1165 |
+
# torch.randn(
|
1166 |
+
# 1,
|
1167 |
+
# )
|
1168 |
+
# )
|
1169 |
+
# self.bias = nn.Parameter(
|
1170 |
+
# torch.randn(
|
1171 |
+
# 1,
|
1172 |
+
# )
|
1173 |
+
# )
|
1174 |
+
|
1175 |
+
# # Initialize weights and apply final processing
|
1176 |
+
# self.post_init()
|
1177 |
+
|
1178 |
+
# @add_start_docstrings_to_model_forward(SIGLIP_TEXT_INPUTS_DOCSTRING)
|
1179 |
+
# def get_text_features(
|
1180 |
+
# self,
|
1181 |
+
# input_ids: Optional[torch.Tensor] = None,
|
1182 |
+
# attention_mask: Optional[torch.Tensor] = None,
|
1183 |
+
# position_ids: Optional[torch.Tensor] = None,
|
1184 |
+
# output_attentions: Optional[bool] = None,
|
1185 |
+
# output_hidden_states: Optional[bool] = None,
|
1186 |
+
# return_dict: Optional[bool] = None,
|
1187 |
+
# ) -> torch.FloatTensor:
|
1188 |
+
# r"""
|
1189 |
+
# Returns:
|
1190 |
+
# text_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The text embeddings obtained by
|
1191 |
+
# applying the projection layer to the pooled output of [`SiglipTextModel`].
|
1192 |
+
|
1193 |
+
# Examples:
|
1194 |
+
|
1195 |
+
# ```python
|
1196 |
+
# >>> from transformers import AutoTokenizer, SiglipModel
|
1197 |
+
|
1198 |
+
# >>> model = SiglipModel.from_pretrained("google/siglip-base-patch16-224")
|
1199 |
+
# >>> tokenizer = AutoTokenizer.from_pretrained("google/siglip-base-patch16-224")
|
1200 |
+
|
1201 |
+
# >>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="pt")
|
1202 |
+
# >>> text_features = model.get_text_features(**inputs)
|
1203 |
+
# ```"""
|
1204 |
+
# # Use SigLIP model's config for some fields (if specified) instead of those of vision & text components.
|
1205 |
+
# output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1206 |
+
# output_hidden_states = (
|
1207 |
+
# output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1208 |
+
# )
|
1209 |
+
# return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1210 |
+
|
1211 |
+
# text_outputs = self.text_model(
|
1212 |
+
# input_ids=input_ids,
|
1213 |
+
# attention_mask=attention_mask,
|
1214 |
+
# position_ids=position_ids,
|
1215 |
+
# output_attentions=output_attentions,
|
1216 |
+
# output_hidden_states=output_hidden_states,
|
1217 |
+
# return_dict=return_dict,
|
1218 |
+
# )
|
1219 |
+
|
1220 |
+
# pooled_output = text_outputs[1]
|
1221 |
+
|
1222 |
+
# return pooled_output
|
1223 |
+
|
1224 |
+
# @add_start_docstrings_to_model_forward(SIGLIP_VISION_INPUTS_DOCSTRING)
|
1225 |
+
# def get_image_features(
|
1226 |
+
# self,
|
1227 |
+
# pixel_values: Optional[torch.FloatTensor] = None,
|
1228 |
+
# output_attentions: Optional[bool] = None,
|
1229 |
+
# output_hidden_states: Optional[bool] = None,
|
1230 |
+
# return_dict: Optional[bool] = None,
|
1231 |
+
# ) -> torch.FloatTensor:
|
1232 |
+
# r"""
|
1233 |
+
# Returns:
|
1234 |
+
# image_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The image embeddings obtained by
|
1235 |
+
# applying the projection layer to the pooled output of [`SiglipVisionModel`].
|
1236 |
+
|
1237 |
+
# Examples:
|
1238 |
+
|
1239 |
+
# ```python
|
1240 |
+
# >>> from PIL import Image
|
1241 |
+
# >>> import requests
|
1242 |
+
# >>> from transformers import AutoProcessor, SiglipModel
|
1243 |
+
|
1244 |
+
# >>> model = SiglipModel.from_pretrained("google/siglip-base-patch16-224")
|
1245 |
+
# >>> processor = AutoProcessor.from_pretrained("google/siglip-base-patch16-224")
|
1246 |
+
|
1247 |
+
# >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
1248 |
+
# >>> image = Image.open(requests.get(url, stream=True).raw)
|
1249 |
+
|
1250 |
+
# >>> inputs = processor(images=image, return_tensors="pt")
|
1251 |
+
|
1252 |
+
# >>> image_features = model.get_image_features(**inputs)
|
1253 |
+
# ```"""
|
1254 |
+
# # Use SiglipModel's config for some fields (if specified) instead of those of vision & text components.
|
1255 |
+
# output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1256 |
+
# output_hidden_states = (
|
1257 |
+
# output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1258 |
+
# )
|
1259 |
+
# return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1260 |
+
|
1261 |
+
# vision_outputs = self.vision_model(
|
1262 |
+
# pixel_values=pixel_values,
|
1263 |
+
# output_attentions=output_attentions,
|
1264 |
+
# output_hidden_states=output_hidden_states,
|
1265 |
+
# return_dict=return_dict,
|
1266 |
+
# )
|
1267 |
+
|
1268 |
+
# pooled_output = vision_outputs[1]
|
1269 |
+
|
1270 |
+
# return pooled_output
|
1271 |
+
|
1272 |
+
# @add_start_docstrings_to_model_forward(SIGLIP_INPUTS_DOCSTRING)
|
1273 |
+
# @replace_return_docstrings(output_type=SiglipOutput, config_class=SiglipConfig)
|
1274 |
+
# def forward(
|
1275 |
+
# self,
|
1276 |
+
# input_ids: Optional[torch.LongTensor] = None,
|
1277 |
+
# pixel_values: Optional[torch.FloatTensor] = None,
|
1278 |
+
# attention_mask: Optional[torch.Tensor] = None,
|
1279 |
+
# position_ids: Optional[torch.LongTensor] = None,
|
1280 |
+
# return_loss: Optional[bool] = None,
|
1281 |
+
# output_attentions: Optional[bool] = None,
|
1282 |
+
# output_hidden_states: Optional[bool] = None,
|
1283 |
+
# return_dict: Optional[bool] = None,
|
1284 |
+
# ) -> Union[Tuple, SiglipOutput]:
|
1285 |
+
# r"""
|
1286 |
+
# Returns:
|
1287 |
+
|
1288 |
+
# Examples:
|
1289 |
+
|
1290 |
+
# ```python
|
1291 |
+
# >>> from PIL import Image
|
1292 |
+
# >>> import requests
|
1293 |
+
# >>> from transformers import AutoProcessor, SiglipModel
|
1294 |
+
|
1295 |
+
# >>> model = SiglipModel.from_pretrained("google/siglip-base-patch16-224")
|
1296 |
+
# >>> processor = AutoProcessor.from_pretrained("google/siglip-base-patch16-224")
|
1297 |
+
|
1298 |
+
# >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
1299 |
+
# >>> image = Image.open(requests.get(url, stream=True).raw)
|
1300 |
+
|
1301 |
+
# >>> inputs = processor(
|
1302 |
+
# ... text=["a photo of a cat", "a photo of a dog"], images=image, return_tensors="pt", padding=True
|
1303 |
+
# ... )
|
1304 |
+
|
1305 |
+
# >>> outputs = model(**inputs)
|
1306 |
+
# >>> logits_per_image = outputs.logits_per_image # this is the image-text similarity score
|
1307 |
+
# >>> probs = logits_per_image.softmax(dim=1) # we can take the softmax to get the label probabilities
|
1308 |
+
# ```"""
|
1309 |
+
# # Use SigLIP model's config for some fields (if specified) instead of those of vision & text components.
|
1310 |
+
# output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1311 |
+
# output_hidden_states = (
|
1312 |
+
# output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1313 |
+
# )
|
1314 |
+
# return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1315 |
+
|
1316 |
+
# vision_outputs = self.vision_model(
|
1317 |
+
# pixel_values=pixel_values,
|
1318 |
+
# output_attentions=output_attentions,
|
1319 |
+
# output_hidden_states=output_hidden_states,
|
1320 |
+
# return_dict=return_dict,
|
1321 |
+
# )
|
1322 |
+
|
1323 |
+
# text_outputs = self.text_model(
|
1324 |
+
# input_ids=input_ids,
|
1325 |
+
# attention_mask=attention_mask,
|
1326 |
+
# position_ids=position_ids,
|
1327 |
+
# output_attentions=output_attentions,
|
1328 |
+
# output_hidden_states=output_hidden_states,
|
1329 |
+
# return_dict=return_dict,
|
1330 |
+
# )
|
1331 |
+
|
1332 |
+
# image_embeds = vision_outputs[1]
|
1333 |
+
# text_embeds = text_outputs[1]
|
1334 |
+
|
1335 |
+
# # normalized features
|
1336 |
+
# image_embeds = image_embeds / image_embeds.norm(p=2, dim=-1, keepdim=True)
|
1337 |
+
# text_embeds = text_embeds / text_embeds.norm(p=2, dim=-1, keepdim=True)
|
1338 |
+
|
1339 |
+
# # cosine similarity as logits
|
1340 |
+
# logits_per_text = torch.matmul(text_embeds, image_embeds.t()) * self.temperature.exp() + self.bias
|
1341 |
+
# logits_per_image = logits_per_text.t()
|
1342 |
+
|
1343 |
+
# z = torch.matmul(image_embeds, text_embeds.t()) * self.temperature.exp()
|
1344 |
+
|
1345 |
+
# loss = None
|
1346 |
+
# if return_loss:
|
1347 |
+
# raise NotImplementedError("SigLIP loss to be implemented")
|
1348 |
+
|
1349 |
+
# if not return_dict:
|
1350 |
+
# output = (logits_per_image, logits_per_text, text_embeds, image_embeds, text_outputs, vision_outputs)
|
1351 |
+
# return ((loss,) + output) if loss is not None else output
|
1352 |
+
|
1353 |
+
# return SiglipOutput(
|
1354 |
+
# loss=loss,
|
1355 |
+
# logits_per_image=logits_per_image,
|
1356 |
+
# logits_per_text=logits_per_text,
|
1357 |
+
# text_embeds=text_embeds,
|
1358 |
+
# image_embeds=image_embeds,
|
1359 |
+
# text_model_output=text_outputs,
|
1360 |
+
# vision_model_output=vision_outputs,
|
1361 |
+
# )
|