VictorSanh
commited on
Commit
·
c8028be
1
Parent(s):
3d51561
clean vision
Browse files
vision.py
CHANGED
@@ -24,27 +24,16 @@ import torch.utils.checkpoint
|
|
24 |
from torch import nn
|
25 |
from transformers.activations import ACT2FN
|
26 |
from transformers.modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling
|
27 |
-
from transformers.modeling_utils import PreTrainedModel
|
28 |
from transformers.utils import (
|
29 |
ModelOutput,
|
30 |
-
add_start_docstrings,
|
31 |
-
add_start_docstrings_to_model_forward,
|
32 |
is_flash_attn_2_available,
|
33 |
-
logging,
|
34 |
-
replace_return_docstrings,
|
35 |
-
)
|
36 |
|
37 |
from .configuration_img2html import Img2HTMLVisionConfig
|
38 |
|
39 |
|
40 |
logger = logging.get_logger(__name__)
|
41 |
|
42 |
-
# _CHECKPOINT_FOR_DOC = "google/siglip-base-patch16-224"
|
43 |
-
|
44 |
-
# SIGLIP_PRETRAINED_MODEL_ARCHIVE_LIST = [
|
45 |
-
# "google/siglip-base-patch16-224",
|
46 |
-
# # See all SigLIP models at https://huggingface.co/models?filter=siglip
|
47 |
-
# ]
|
48 |
|
49 |
if is_flash_attn_2_available():
|
50 |
from flash_attn import flash_attn_func, flash_attn_varlen_func
|
@@ -64,34 +53,6 @@ def _get_unpad_data(attention_mask):
|
|
64 |
)
|
65 |
|
66 |
|
67 |
-
# # Copied from transformers.models.bart.modeling_bart._expand_mask
|
68 |
-
# def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
|
69 |
-
# """
|
70 |
-
# Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
|
71 |
-
# """
|
72 |
-
# bsz, src_len = mask.size()
|
73 |
-
# tgt_len = tgt_len if tgt_len is not None else src_len
|
74 |
-
|
75 |
-
# expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
|
76 |
-
|
77 |
-
# inverted_mask = 1.0 - expanded_mask
|
78 |
-
|
79 |
-
# return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
|
80 |
-
|
81 |
-
|
82 |
-
# # contrastive loss function, adapted from
|
83 |
-
# # https://sachinruk.github.io/blog/2021-03-07-siglip.html
|
84 |
-
# def contrastive_loss(logits: torch.Tensor) -> torch.Tensor:
|
85 |
-
# return nn.functional.cross_entropy(logits, torch.arange(len(logits), device=logits.device))
|
86 |
-
|
87 |
-
|
88 |
-
# # Copied from transformers.models.clip.modeling_clip.clip_loss with clip->siglip
|
89 |
-
# def siglip_loss(similarity: torch.Tensor) -> torch.Tensor:
|
90 |
-
# caption_loss = contrastive_loss(similarity)
|
91 |
-
# image_loss = contrastive_loss(similarity.t())
|
92 |
-
# return (caption_loss + image_loss) / 2.0
|
93 |
-
|
94 |
-
|
95 |
@dataclass
|
96 |
# Copied from transformers.models.clip.modeling_clip.CLIPVisionModelOutput with CLIP->Siglip
|
97 |
class SiglipVisionModelOutput(ModelOutput):
|
@@ -122,75 +83,6 @@ class SiglipVisionModelOutput(ModelOutput):
|
|
122 |
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
123 |
|
124 |
|
125 |
-
# @dataclass
|
126 |
-
# # Copied from transformers.models.clip.modeling_clip.CLIPTextModelOutput with CLIP->Siglip
|
127 |
-
# class SiglipTextModelOutput(ModelOutput):
|
128 |
-
# """
|
129 |
-
# Base class for text model's outputs that also contains a pooling of the last hidden states.
|
130 |
-
|
131 |
-
# Args:
|
132 |
-
# text_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`):
|
133 |
-
# The text embeddings obtained by applying the projection layer to the pooler_output.
|
134 |
-
# last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
135 |
-
# Sequence of hidden-states at the output of the last layer of the model.
|
136 |
-
# hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
137 |
-
# Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
138 |
-
# one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
139 |
-
|
140 |
-
# Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
141 |
-
# attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
142 |
-
# Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
143 |
-
# sequence_length)`.
|
144 |
-
|
145 |
-
# Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
146 |
-
# heads.
|
147 |
-
# """
|
148 |
-
|
149 |
-
# text_embeds: Optional[torch.FloatTensor] = None
|
150 |
-
# last_hidden_state: torch.FloatTensor = None
|
151 |
-
# hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
152 |
-
# attentions: Optional[Tuple[torch.FloatTensor]] = None
|
153 |
-
|
154 |
-
|
155 |
-
# @dataclass
|
156 |
-
# # Copied from transformers.models.clip.modeling_clip.CLIPOutput with CLIP->Siglip
|
157 |
-
# class SiglipOutput(ModelOutput):
|
158 |
-
# """
|
159 |
-
# Args:
|
160 |
-
# loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `return_loss` is `True`):
|
161 |
-
# Contrastive loss for image-text similarity.
|
162 |
-
# logits_per_image:(`torch.FloatTensor` of shape `(image_batch_size, text_batch_size)`):
|
163 |
-
# The scaled dot product scores between `image_embeds` and `text_embeds`. This represents the image-text
|
164 |
-
# similarity scores.
|
165 |
-
# logits_per_text:(`torch.FloatTensor` of shape `(text_batch_size, image_batch_size)`):
|
166 |
-
# The scaled dot product scores between `text_embeds` and `image_embeds`. This represents the text-image
|
167 |
-
# similarity scores.
|
168 |
-
# text_embeds(`torch.FloatTensor` of shape `(batch_size, output_dim`):
|
169 |
-
# The text embeddings obtained by applying the projection layer to the pooled output of [`SiglipTextModel`].
|
170 |
-
# image_embeds(`torch.FloatTensor` of shape `(batch_size, output_dim`):
|
171 |
-
# The image embeddings obtained by applying the projection layer to the pooled output of
|
172 |
-
# [`SiglipVisionModel`].
|
173 |
-
# text_model_output(`BaseModelOutputWithPooling`):
|
174 |
-
# The output of the [`SiglipTextModel`].
|
175 |
-
# vision_model_output(`BaseModelOutputWithPooling`):
|
176 |
-
# The output of the [`SiglipVisionModel`].
|
177 |
-
# """
|
178 |
-
|
179 |
-
# loss: Optional[torch.FloatTensor] = None
|
180 |
-
# logits_per_image: torch.FloatTensor = None
|
181 |
-
# logits_per_text: torch.FloatTensor = None
|
182 |
-
# text_embeds: torch.FloatTensor = None
|
183 |
-
# image_embeds: torch.FloatTensor = None
|
184 |
-
# text_model_output: BaseModelOutputWithPooling = None
|
185 |
-
# vision_model_output: BaseModelOutputWithPooling = None
|
186 |
-
|
187 |
-
# def to_tuple(self) -> Tuple[Any]:
|
188 |
-
# return tuple(
|
189 |
-
# self[k] if k not in ["text_model_output", "vision_model_output"] else getattr(self, k).to_tuple()
|
190 |
-
# for k in self.keys()
|
191 |
-
# )
|
192 |
-
|
193 |
-
|
194 |
class SiglipVisionEmbeddings(nn.Module):
|
195 |
def __init__(self, config: Img2HTMLVisionConfig):
|
196 |
super().__init__()
|
@@ -220,40 +112,6 @@ class SiglipVisionEmbeddings(nn.Module):
|
|
220 |
return embeddings
|
221 |
|
222 |
|
223 |
-
# # Copied from transformers.models.clip.modeling_clip.CLIPTextEmbeddings with CLIP->Siglip
|
224 |
-
# class SiglipTextEmbeddings(nn.Module):
|
225 |
-
# def __init__(self, config: SiglipTextConfig):
|
226 |
-
# super().__init__()
|
227 |
-
# embed_dim = config.hidden_size
|
228 |
-
|
229 |
-
# self.token_embedding = nn.Embedding(config.vocab_size, embed_dim)
|
230 |
-
# self.position_embedding = nn.Embedding(config.max_position_embeddings, embed_dim)
|
231 |
-
|
232 |
-
# # position_ids (1, len position emb) is contiguous in memory and exported when serialized
|
233 |
-
# self.register_buffer(
|
234 |
-
# "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
|
235 |
-
# )
|
236 |
-
|
237 |
-
# def forward(
|
238 |
-
# self,
|
239 |
-
# input_ids: Optional[torch.LongTensor] = None,
|
240 |
-
# position_ids: Optional[torch.LongTensor] = None,
|
241 |
-
# inputs_embeds: Optional[torch.FloatTensor] = None,
|
242 |
-
# ) -> torch.Tensor:
|
243 |
-
# seq_length = input_ids.shape[-1] if input_ids is not None else inputs_embeds.shape[-2]
|
244 |
-
|
245 |
-
# if position_ids is None:
|
246 |
-
# position_ids = self.position_ids[:, :seq_length]
|
247 |
-
|
248 |
-
# if inputs_embeds is None:
|
249 |
-
# inputs_embeds = self.token_embedding(input_ids)
|
250 |
-
|
251 |
-
# position_embeddings = self.position_embedding(position_ids)
|
252 |
-
# embeddings = inputs_embeds + position_embeddings
|
253 |
-
|
254 |
-
# return embeddings
|
255 |
-
|
256 |
-
|
257 |
# Copied from transformers.models.clip.modeling_clip.CLIPAttention with CLIP->Siglip
|
258 |
class SiglipAttention(nn.Module):
|
259 |
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
@@ -618,150 +476,6 @@ class SiglipEncoderLayer(nn.Module):
|
|
618 |
return outputs
|
619 |
|
620 |
|
621 |
-
# class SiglipPreTrainedModel(PreTrainedModel):
|
622 |
-
# """
|
623 |
-
# An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
624 |
-
# models.
|
625 |
-
# """
|
626 |
-
|
627 |
-
# config_class = SiglipConfig
|
628 |
-
# base_model_prefix = "siglip"
|
629 |
-
# supports_gradient_checkpointing = True
|
630 |
-
|
631 |
-
# def _init_weights(self, module):
|
632 |
-
# """Initialize the weights"""
|
633 |
-
# factor = self.config.initializer_factor
|
634 |
-
# if isinstance(module, SiglipVisionEmbeddings):
|
635 |
-
# factor = self.config.initializer_factor
|
636 |
-
# nn.init.normal_(module.patch_embedding.weight, std=module.config.initializer_range * factor)
|
637 |
-
# nn.init.normal_(module.position_embedding.weight, std=module.config.initializer_range * factor)
|
638 |
-
# elif isinstance(module, SiglipAttention):
|
639 |
-
# factor = self.config.initializer_factor
|
640 |
-
# in_proj_std = (module.embed_dim**-0.5) * ((2 * module.config.num_hidden_layers) ** -0.5) * factor
|
641 |
-
# out_proj_std = (module.embed_dim**-0.5) * factor
|
642 |
-
# nn.init.normal_(module.q_proj.weight, std=in_proj_std)
|
643 |
-
# nn.init.normal_(module.k_proj.weight, std=in_proj_std)
|
644 |
-
# nn.init.normal_(module.v_proj.weight, std=in_proj_std)
|
645 |
-
# nn.init.normal_(module.out_proj.weight, std=out_proj_std)
|
646 |
-
# elif isinstance(module, SiglipMLP):
|
647 |
-
# factor = self.config.initializer_factor
|
648 |
-
# in_proj_std = (
|
649 |
-
# (module.config.hidden_size**-0.5) * ((2 * module.config.num_hidden_layers) ** -0.5) * factor
|
650 |
-
# )
|
651 |
-
# fc_std = (2 * module.config.hidden_size) ** -0.5 * factor
|
652 |
-
# nn.init.normal_(module.fc1.weight, std=fc_std)
|
653 |
-
# nn.init.normal_(module.fc2.weight, std=in_proj_std)
|
654 |
-
# if isinstance(module, nn.LayerNorm):
|
655 |
-
# module.bias.data.zero_()
|
656 |
-
# module.weight.data.fill_(1.0)
|
657 |
-
# if isinstance(module, nn.Linear) and module.bias is not None:
|
658 |
-
# module.bias.data.zero_()
|
659 |
-
|
660 |
-
# def _set_gradient_checkpointing(self, module, value=False):
|
661 |
-
# if isinstance(module, SiglipEncoder):
|
662 |
-
# module.gradient_checkpointing = value
|
663 |
-
|
664 |
-
|
665 |
-
# SIGLIP_START_DOCSTRING = r"""
|
666 |
-
# This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
667 |
-
# library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
668 |
-
# etc.)
|
669 |
-
|
670 |
-
# This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
671 |
-
# Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
672 |
-
# and behavior.
|
673 |
-
|
674 |
-
# Parameters:
|
675 |
-
# config ([`SiglipConfig`]): Model configuration class with all the parameters of the model.
|
676 |
-
# Initializing with a config file does not load the weights associated with the model, only the
|
677 |
-
# configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
678 |
-
# """
|
679 |
-
|
680 |
-
# SIGLIP_TEXT_INPUTS_DOCSTRING = r"""
|
681 |
-
# Args:
|
682 |
-
# input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
683 |
-
# Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
684 |
-
# it.
|
685 |
-
|
686 |
-
# Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
687 |
-
# [`PreTrainedTokenizer.__call__`] for details.
|
688 |
-
|
689 |
-
# [What are input IDs?](../glossary#input-ids)
|
690 |
-
# attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
691 |
-
# Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
692 |
-
|
693 |
-
# - 1 for tokens that are **not masked**,
|
694 |
-
# - 0 for tokens that are **masked**.
|
695 |
-
|
696 |
-
# [What are attention masks?](../glossary#attention-mask)
|
697 |
-
# position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
698 |
-
# Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
699 |
-
# config.max_position_embeddings - 1]`.
|
700 |
-
|
701 |
-
# [What are position IDs?](../glossary#position-ids)
|
702 |
-
# output_attentions (`bool`, *optional*):
|
703 |
-
# Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
704 |
-
# tensors for more detail.
|
705 |
-
# output_hidden_states (`bool`, *optional*):
|
706 |
-
# Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
707 |
-
# more detail.
|
708 |
-
# return_dict (`bool`, *optional*):
|
709 |
-
# Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
710 |
-
# """
|
711 |
-
|
712 |
-
# SIGLIP_VISION_INPUTS_DOCSTRING = r"""
|
713 |
-
# Args:
|
714 |
-
# pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
715 |
-
# Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using
|
716 |
-
# [`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details.
|
717 |
-
# output_attentions (`bool`, *optional*):
|
718 |
-
# Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
719 |
-
# tensors for more detail.
|
720 |
-
# output_hidden_states (`bool`, *optional*):
|
721 |
-
# Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
722 |
-
# more detail.
|
723 |
-
# return_dict (`bool`, *optional*):
|
724 |
-
# Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
725 |
-
# """
|
726 |
-
|
727 |
-
# SIGLIP_INPUTS_DOCSTRING = r"""
|
728 |
-
# Args:
|
729 |
-
# input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
730 |
-
# Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
731 |
-
# it.
|
732 |
-
|
733 |
-
# Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
734 |
-
# [`PreTrainedTokenizer.__call__`] for details.
|
735 |
-
|
736 |
-
# [What are input IDs?](../glossary#input-ids)
|
737 |
-
# attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
738 |
-
# Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
739 |
-
|
740 |
-
# - 1 for tokens that are **not masked**,
|
741 |
-
# - 0 for tokens that are **masked**.
|
742 |
-
|
743 |
-
# [What are attention masks?](../glossary#attention-mask)
|
744 |
-
# position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
745 |
-
# Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
746 |
-
# config.max_position_embeddings - 1]`.
|
747 |
-
|
748 |
-
# [What are position IDs?](../glossary#position-ids)
|
749 |
-
# pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
750 |
-
# Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using
|
751 |
-
# [`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details.
|
752 |
-
# return_loss (`bool`, *optional*):
|
753 |
-
# Whether or not to return the contrastive loss.
|
754 |
-
# output_attentions (`bool`, *optional*):
|
755 |
-
# Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
756 |
-
# tensors for more detail.
|
757 |
-
# output_hidden_states (`bool`, *optional*):
|
758 |
-
# Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
759 |
-
# more detail.
|
760 |
-
# return_dict (`bool`, *optional*):
|
761 |
-
# Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
762 |
-
# """
|
763 |
-
|
764 |
-
|
765 |
# Copied from transformers.models.clip.modeling_clip.CLIPEncoder with CLIP->Siglip
|
766 |
class SiglipEncoder(nn.Module):
|
767 |
"""
|
@@ -787,35 +501,6 @@ class SiglipEncoder(nn.Module):
|
|
787 |
output_hidden_states: Optional[bool] = None,
|
788 |
return_dict: Optional[bool] = None,
|
789 |
) -> Union[Tuple, BaseModelOutput]:
|
790 |
-
r"""
|
791 |
-
Args:
|
792 |
-
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
793 |
-
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
|
794 |
-
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
|
795 |
-
than the model's internal embedding lookup matrix.
|
796 |
-
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
797 |
-
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
798 |
-
|
799 |
-
- 1 for tokens that are **not masked**,
|
800 |
-
- 0 for tokens that are **masked**.
|
801 |
-
|
802 |
-
[What are attention masks?](../glossary#attention-mask)
|
803 |
-
causal_attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
804 |
-
Causal mask for the text model. Mask values selected in `[0, 1]`:
|
805 |
-
|
806 |
-
- 1 for tokens that are **not masked**,
|
807 |
-
- 0 for tokens that are **masked**.
|
808 |
-
|
809 |
-
[What are attention masks?](../glossary#attention-mask)
|
810 |
-
output_attentions (`bool`, *optional*):
|
811 |
-
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
812 |
-
returned tensors for more detail.
|
813 |
-
output_hidden_states (`bool`, *optional*):
|
814 |
-
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
|
815 |
-
for more detail.
|
816 |
-
return_dict (`bool`, *optional*):
|
817 |
-
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
818 |
-
"""
|
819 |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
820 |
output_hidden_states = (
|
821 |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
@@ -866,140 +551,6 @@ class SiglipEncoder(nn.Module):
|
|
866 |
)
|
867 |
|
868 |
|
869 |
-
# class SiglipTextTransformer(nn.Module):
|
870 |
-
# def __init__(self, config: SiglipTextConfig):
|
871 |
-
# super().__init__()
|
872 |
-
# self.config = config
|
873 |
-
# embed_dim = config.hidden_size
|
874 |
-
# self.embeddings = SiglipTextEmbeddings(config)
|
875 |
-
# self.encoder = SiglipEncoder(config)
|
876 |
-
# self.final_layer_norm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
|
877 |
-
|
878 |
-
# self.head = nn.Linear(embed_dim, embed_dim)
|
879 |
-
|
880 |
-
# @add_start_docstrings_to_model_forward(SIGLIP_TEXT_INPUTS_DOCSTRING)
|
881 |
-
# @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=SiglipTextConfig)
|
882 |
-
# def forward(
|
883 |
-
# self,
|
884 |
-
# input_ids: Optional[torch.Tensor] = None,
|
885 |
-
# attention_mask: Optional[torch.Tensor] = None,
|
886 |
-
# position_ids: Optional[torch.Tensor] = None,
|
887 |
-
# output_attentions: Optional[bool] = None,
|
888 |
-
# output_hidden_states: Optional[bool] = None,
|
889 |
-
# return_dict: Optional[bool] = None,
|
890 |
-
# ) -> Union[Tuple, BaseModelOutputWithPooling]:
|
891 |
-
# r"""
|
892 |
-
# Returns:
|
893 |
-
|
894 |
-
# """
|
895 |
-
# output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
896 |
-
# output_hidden_states = (
|
897 |
-
# output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
898 |
-
# )
|
899 |
-
# return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
900 |
-
|
901 |
-
# if input_ids is None:
|
902 |
-
# raise ValueError("You have to specify input_ids")
|
903 |
-
|
904 |
-
# input_shape = input_ids.size()
|
905 |
-
# input_ids = input_ids.view(-1, input_shape[-1])
|
906 |
-
|
907 |
-
# hidden_states = self.embeddings(input_ids=input_ids, position_ids=position_ids)
|
908 |
-
|
909 |
-
# # note: SigLIP's text model does not use q causal mask, unlike the original CLIP model.
|
910 |
-
# # expand attention_mask
|
911 |
-
# if attention_mask is not None:
|
912 |
-
# # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
913 |
-
# attention_mask = _expand_mask(attention_mask, hidden_states.dtype)
|
914 |
-
|
915 |
-
# encoder_outputs = self.encoder(
|
916 |
-
# inputs_embeds=hidden_states,
|
917 |
-
# attention_mask=None,
|
918 |
-
# causal_attention_mask=None,
|
919 |
-
# output_attentions=output_attentions,
|
920 |
-
# output_hidden_states=output_hidden_states,
|
921 |
-
# return_dict=return_dict,
|
922 |
-
# )
|
923 |
-
|
924 |
-
# last_hidden_state = encoder_outputs[0]
|
925 |
-
# last_hidden_state = self.final_layer_norm(last_hidden_state)
|
926 |
-
|
927 |
-
# # Assuming "sticky" EOS tokenization, last token is always EOS.
|
928 |
-
# pooled_output = last_hidden_state[:, -1, :]
|
929 |
-
# pooled_output = self.head(pooled_output)
|
930 |
-
|
931 |
-
# if not return_dict:
|
932 |
-
# return (last_hidden_state, pooled_output) + encoder_outputs[1:]
|
933 |
-
|
934 |
-
# return BaseModelOutputWithPooling(
|
935 |
-
# last_hidden_state=last_hidden_state,
|
936 |
-
# pooler_output=pooled_output,
|
937 |
-
# hidden_states=encoder_outputs.hidden_states,
|
938 |
-
# attentions=encoder_outputs.attentions,
|
939 |
-
# )
|
940 |
-
|
941 |
-
|
942 |
-
# @add_start_docstrings(
|
943 |
-
# """The text model from SigLIP without any head or projection on top.""",
|
944 |
-
# SIGLIP_START_DOCSTRING,
|
945 |
-
# )
|
946 |
-
# class SiglipTextModel(SiglipPreTrainedModel):
|
947 |
-
# config_class = SiglipTextConfig
|
948 |
-
|
949 |
-
# _no_split_modules = ["SiglipTextEmbeddings", "SiglipEncoderLayer"]
|
950 |
-
|
951 |
-
# def __init__(self, config: SiglipTextConfig):
|
952 |
-
# super().__init__(config)
|
953 |
-
# self.text_model = SiglipTextTransformer(config)
|
954 |
-
# # Initialize weights and apply final processing
|
955 |
-
# self.post_init()
|
956 |
-
|
957 |
-
# def get_input_embeddings(self) -> nn.Module:
|
958 |
-
# return self.text_model.embeddings.token_embedding
|
959 |
-
|
960 |
-
# def set_input_embeddings(self, value):
|
961 |
-
# self.text_model.embeddings.token_embedding = value
|
962 |
-
|
963 |
-
# @add_start_docstrings_to_model_forward(SIGLIP_TEXT_INPUTS_DOCSTRING)
|
964 |
-
# @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=SiglipTextConfig)
|
965 |
-
# def forward(
|
966 |
-
# self,
|
967 |
-
# input_ids: Optional[torch.Tensor] = None,
|
968 |
-
# attention_mask: Optional[torch.Tensor] = None,
|
969 |
-
# position_ids: Optional[torch.Tensor] = None,
|
970 |
-
# output_attentions: Optional[bool] = None,
|
971 |
-
# output_hidden_states: Optional[bool] = None,
|
972 |
-
# return_dict: Optional[bool] = None,
|
973 |
-
# ) -> Union[Tuple, BaseModelOutputWithPooling]:
|
974 |
-
# r"""
|
975 |
-
# Returns:
|
976 |
-
|
977 |
-
# Examples:
|
978 |
-
|
979 |
-
# ```python
|
980 |
-
# >>> from transformers import AutoTokenizer, SiglipTextModel
|
981 |
-
|
982 |
-
# >>> model = SiglipTextModel.from_pretrained("google/siglip-base-patch16-224")
|
983 |
-
# >>> tokenizer = AutoTokenizer.from_pretrained("google/siglip-base-patch16-224")
|
984 |
-
|
985 |
-
# >>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="pt")
|
986 |
-
|
987 |
-
# >>> outputs = model(**inputs)
|
988 |
-
# >>> last_hidden_state = outputs.last_hidden_state
|
989 |
-
# >>> pooled_output = outputs.pooler_output # pooled (EOS token) states
|
990 |
-
# ```"""
|
991 |
-
# return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
992 |
-
|
993 |
-
# return self.text_model(
|
994 |
-
# input_ids=input_ids,
|
995 |
-
# attention_mask=attention_mask,
|
996 |
-
# position_ids=position_ids,
|
997 |
-
# output_attentions=output_attentions,
|
998 |
-
# output_hidden_states=output_hidden_states,
|
999 |
-
# return_dict=return_dict,
|
1000 |
-
# )
|
1001 |
-
|
1002 |
-
|
1003 |
class SiglipVisionTransformer(nn.Module):
|
1004 |
def __init__(self, config: Img2HTMLVisionConfig):
|
1005 |
super().__init__()
|
@@ -1011,8 +562,6 @@ class SiglipVisionTransformer(nn.Module):
|
|
1011 |
self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
|
1012 |
self.head = SiglipMultiheadAttentionPoolingHead(config)
|
1013 |
|
1014 |
-
# @add_start_docstrings_to_model_forward(SIGLIP_VISION_INPUTS_DOCSTRING)
|
1015 |
-
# @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=Img2HTMLVisionConfig)
|
1016 |
def forward(
|
1017 |
self,
|
1018 |
pixel_values,
|
@@ -1079,24 +628,13 @@ class SiglipMultiheadAttentionPoolingHead(nn.Module):
|
|
1079 |
return hidden_state[:, 0]
|
1080 |
|
1081 |
|
1082 |
-
# @add_start_docstrings(
|
1083 |
-
# """The vision model from SigLIP without any head or projection on top.""",
|
1084 |
-
# SIGLIP_START_DOCSTRING,
|
1085 |
-
# )
|
1086 |
class SiglipVisionModel(nn.Module):
|
1087 |
def __init__(self, config: Img2HTMLVisionConfig):
|
1088 |
super().__init__()
|
1089 |
|
|
|
1090 |
self.vision_model = SiglipVisionTransformer(config)
|
1091 |
|
1092 |
-
# # Initialize weights and apply final processing
|
1093 |
-
# self.post_init()
|
1094 |
-
|
1095 |
-
# def get_input_embeddings(self) -> nn.Module:
|
1096 |
-
# return self.vision_model.embeddings.patch_embedding
|
1097 |
-
|
1098 |
-
# @add_start_docstrings_to_model_forward(SIGLIP_VISION_INPUTS_DOCSTRING)
|
1099 |
-
# @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=Img2HTMLVisionConfig)
|
1100 |
def forward(
|
1101 |
self,
|
1102 |
pixel_values,
|
@@ -1104,28 +642,6 @@ class SiglipVisionModel(nn.Module):
|
|
1104 |
output_hidden_states: Optional[bool] = None,
|
1105 |
return_dict: Optional[bool] = None,
|
1106 |
) -> Union[Tuple, BaseModelOutputWithPooling]:
|
1107 |
-
# r"""
|
1108 |
-
# Returns:
|
1109 |
-
|
1110 |
-
# Examples:
|
1111 |
-
|
1112 |
-
# ```python
|
1113 |
-
# >>> from PIL import Image
|
1114 |
-
# >>> import requests
|
1115 |
-
# >>> from transformers import AutoProcessor, SiglipVisionModel
|
1116 |
-
|
1117 |
-
# >>> model = SiglipVisionModel.from_pretrained("google/siglip-base-patch16-224")
|
1118 |
-
# >>> processor = AutoProcessor.from_pretrained("google/siglip-base-patch16-224")
|
1119 |
-
|
1120 |
-
# >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
1121 |
-
# >>> image = Image.open(requests.get(url, stream=True).raw)
|
1122 |
-
|
1123 |
-
# >>> inputs = processor(images=image, return_tensors="pt")
|
1124 |
-
|
1125 |
-
# >>> outputs = model(**inputs)
|
1126 |
-
# >>> last_hidden_state = outputs.last_hidden_state
|
1127 |
-
# >>> pooled_output = outputs.pooler_output # pooled CLS states
|
1128 |
-
# ```"""
|
1129 |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1130 |
|
1131 |
return self.vision_model(
|
@@ -1134,228 +650,3 @@ class SiglipVisionModel(nn.Module):
|
|
1134 |
output_hidden_states=output_hidden_states,
|
1135 |
return_dict=return_dict,
|
1136 |
)
|
1137 |
-
|
1138 |
-
|
1139 |
-
# @add_start_docstrings(SIGLIP_START_DOCSTRING)
|
1140 |
-
# class SiglipModel(SiglipPreTrainedModel):
|
1141 |
-
# config_class = SiglipConfig
|
1142 |
-
|
1143 |
-
# def __init__(self, config: SiglipConfig):
|
1144 |
-
# super().__init__(config)
|
1145 |
-
|
1146 |
-
# if not isinstance(config.text_config, SiglipTextConfig):
|
1147 |
-
# raise ValueError(
|
1148 |
-
# "config.text_config is expected to be of type SiglipTextConfig but is of type"
|
1149 |
-
# f" {type(config.text_config)}."
|
1150 |
-
# )
|
1151 |
-
|
1152 |
-
# if not isinstance(config.vision_config, SiglipVisionConfig):
|
1153 |
-
# raise ValueError(
|
1154 |
-
# "config.vision_config is expected to be of type SiglipVisionConfig but is of type"
|
1155 |
-
# f" {type(config.vision_config)}."
|
1156 |
-
# )
|
1157 |
-
|
1158 |
-
# text_config = config.text_config
|
1159 |
-
# vision_config = config.vision_config
|
1160 |
-
|
1161 |
-
# self.text_model = SiglipTextModel(text_config)
|
1162 |
-
# self.vision_model = SiglipVisionModel(vision_config)
|
1163 |
-
|
1164 |
-
# self.temperature = nn.Parameter(
|
1165 |
-
# torch.randn(
|
1166 |
-
# 1,
|
1167 |
-
# )
|
1168 |
-
# )
|
1169 |
-
# self.bias = nn.Parameter(
|
1170 |
-
# torch.randn(
|
1171 |
-
# 1,
|
1172 |
-
# )
|
1173 |
-
# )
|
1174 |
-
|
1175 |
-
# # Initialize weights and apply final processing
|
1176 |
-
# self.post_init()
|
1177 |
-
|
1178 |
-
# @add_start_docstrings_to_model_forward(SIGLIP_TEXT_INPUTS_DOCSTRING)
|
1179 |
-
# def get_text_features(
|
1180 |
-
# self,
|
1181 |
-
# input_ids: Optional[torch.Tensor] = None,
|
1182 |
-
# attention_mask: Optional[torch.Tensor] = None,
|
1183 |
-
# position_ids: Optional[torch.Tensor] = None,
|
1184 |
-
# output_attentions: Optional[bool] = None,
|
1185 |
-
# output_hidden_states: Optional[bool] = None,
|
1186 |
-
# return_dict: Optional[bool] = None,
|
1187 |
-
# ) -> torch.FloatTensor:
|
1188 |
-
# r"""
|
1189 |
-
# Returns:
|
1190 |
-
# text_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The text embeddings obtained by
|
1191 |
-
# applying the projection layer to the pooled output of [`SiglipTextModel`].
|
1192 |
-
|
1193 |
-
# Examples:
|
1194 |
-
|
1195 |
-
# ```python
|
1196 |
-
# >>> from transformers import AutoTokenizer, SiglipModel
|
1197 |
-
|
1198 |
-
# >>> model = SiglipModel.from_pretrained("google/siglip-base-patch16-224")
|
1199 |
-
# >>> tokenizer = AutoTokenizer.from_pretrained("google/siglip-base-patch16-224")
|
1200 |
-
|
1201 |
-
# >>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="pt")
|
1202 |
-
# >>> text_features = model.get_text_features(**inputs)
|
1203 |
-
# ```"""
|
1204 |
-
# # Use SigLIP model's config for some fields (if specified) instead of those of vision & text components.
|
1205 |
-
# output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1206 |
-
# output_hidden_states = (
|
1207 |
-
# output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1208 |
-
# )
|
1209 |
-
# return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1210 |
-
|
1211 |
-
# text_outputs = self.text_model(
|
1212 |
-
# input_ids=input_ids,
|
1213 |
-
# attention_mask=attention_mask,
|
1214 |
-
# position_ids=position_ids,
|
1215 |
-
# output_attentions=output_attentions,
|
1216 |
-
# output_hidden_states=output_hidden_states,
|
1217 |
-
# return_dict=return_dict,
|
1218 |
-
# )
|
1219 |
-
|
1220 |
-
# pooled_output = text_outputs[1]
|
1221 |
-
|
1222 |
-
# return pooled_output
|
1223 |
-
|
1224 |
-
# @add_start_docstrings_to_model_forward(SIGLIP_VISION_INPUTS_DOCSTRING)
|
1225 |
-
# def get_image_features(
|
1226 |
-
# self,
|
1227 |
-
# pixel_values: Optional[torch.FloatTensor] = None,
|
1228 |
-
# output_attentions: Optional[bool] = None,
|
1229 |
-
# output_hidden_states: Optional[bool] = None,
|
1230 |
-
# return_dict: Optional[bool] = None,
|
1231 |
-
# ) -> torch.FloatTensor:
|
1232 |
-
# r"""
|
1233 |
-
# Returns:
|
1234 |
-
# image_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The image embeddings obtained by
|
1235 |
-
# applying the projection layer to the pooled output of [`SiglipVisionModel`].
|
1236 |
-
|
1237 |
-
# Examples:
|
1238 |
-
|
1239 |
-
# ```python
|
1240 |
-
# >>> from PIL import Image
|
1241 |
-
# >>> import requests
|
1242 |
-
# >>> from transformers import AutoProcessor, SiglipModel
|
1243 |
-
|
1244 |
-
# >>> model = SiglipModel.from_pretrained("google/siglip-base-patch16-224")
|
1245 |
-
# >>> processor = AutoProcessor.from_pretrained("google/siglip-base-patch16-224")
|
1246 |
-
|
1247 |
-
# >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
1248 |
-
# >>> image = Image.open(requests.get(url, stream=True).raw)
|
1249 |
-
|
1250 |
-
# >>> inputs = processor(images=image, return_tensors="pt")
|
1251 |
-
|
1252 |
-
# >>> image_features = model.get_image_features(**inputs)
|
1253 |
-
# ```"""
|
1254 |
-
# # Use SiglipModel's config for some fields (if specified) instead of those of vision & text components.
|
1255 |
-
# output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1256 |
-
# output_hidden_states = (
|
1257 |
-
# output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1258 |
-
# )
|
1259 |
-
# return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1260 |
-
|
1261 |
-
# vision_outputs = self.vision_model(
|
1262 |
-
# pixel_values=pixel_values,
|
1263 |
-
# output_attentions=output_attentions,
|
1264 |
-
# output_hidden_states=output_hidden_states,
|
1265 |
-
# return_dict=return_dict,
|
1266 |
-
# )
|
1267 |
-
|
1268 |
-
# pooled_output = vision_outputs[1]
|
1269 |
-
|
1270 |
-
# return pooled_output
|
1271 |
-
|
1272 |
-
# @add_start_docstrings_to_model_forward(SIGLIP_INPUTS_DOCSTRING)
|
1273 |
-
# @replace_return_docstrings(output_type=SiglipOutput, config_class=SiglipConfig)
|
1274 |
-
# def forward(
|
1275 |
-
# self,
|
1276 |
-
# input_ids: Optional[torch.LongTensor] = None,
|
1277 |
-
# pixel_values: Optional[torch.FloatTensor] = None,
|
1278 |
-
# attention_mask: Optional[torch.Tensor] = None,
|
1279 |
-
# position_ids: Optional[torch.LongTensor] = None,
|
1280 |
-
# return_loss: Optional[bool] = None,
|
1281 |
-
# output_attentions: Optional[bool] = None,
|
1282 |
-
# output_hidden_states: Optional[bool] = None,
|
1283 |
-
# return_dict: Optional[bool] = None,
|
1284 |
-
# ) -> Union[Tuple, SiglipOutput]:
|
1285 |
-
# r"""
|
1286 |
-
# Returns:
|
1287 |
-
|
1288 |
-
# Examples:
|
1289 |
-
|
1290 |
-
# ```python
|
1291 |
-
# >>> from PIL import Image
|
1292 |
-
# >>> import requests
|
1293 |
-
# >>> from transformers import AutoProcessor, SiglipModel
|
1294 |
-
|
1295 |
-
# >>> model = SiglipModel.from_pretrained("google/siglip-base-patch16-224")
|
1296 |
-
# >>> processor = AutoProcessor.from_pretrained("google/siglip-base-patch16-224")
|
1297 |
-
|
1298 |
-
# >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
1299 |
-
# >>> image = Image.open(requests.get(url, stream=True).raw)
|
1300 |
-
|
1301 |
-
# >>> inputs = processor(
|
1302 |
-
# ... text=["a photo of a cat", "a photo of a dog"], images=image, return_tensors="pt", padding=True
|
1303 |
-
# ... )
|
1304 |
-
|
1305 |
-
# >>> outputs = model(**inputs)
|
1306 |
-
# >>> logits_per_image = outputs.logits_per_image # this is the image-text similarity score
|
1307 |
-
# >>> probs = logits_per_image.softmax(dim=1) # we can take the softmax to get the label probabilities
|
1308 |
-
# ```"""
|
1309 |
-
# # Use SigLIP model's config for some fields (if specified) instead of those of vision & text components.
|
1310 |
-
# output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1311 |
-
# output_hidden_states = (
|
1312 |
-
# output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1313 |
-
# )
|
1314 |
-
# return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1315 |
-
|
1316 |
-
# vision_outputs = self.vision_model(
|
1317 |
-
# pixel_values=pixel_values,
|
1318 |
-
# output_attentions=output_attentions,
|
1319 |
-
# output_hidden_states=output_hidden_states,
|
1320 |
-
# return_dict=return_dict,
|
1321 |
-
# )
|
1322 |
-
|
1323 |
-
# text_outputs = self.text_model(
|
1324 |
-
# input_ids=input_ids,
|
1325 |
-
# attention_mask=attention_mask,
|
1326 |
-
# position_ids=position_ids,
|
1327 |
-
# output_attentions=output_attentions,
|
1328 |
-
# output_hidden_states=output_hidden_states,
|
1329 |
-
# return_dict=return_dict,
|
1330 |
-
# )
|
1331 |
-
|
1332 |
-
# image_embeds = vision_outputs[1]
|
1333 |
-
# text_embeds = text_outputs[1]
|
1334 |
-
|
1335 |
-
# # normalized features
|
1336 |
-
# image_embeds = image_embeds / image_embeds.norm(p=2, dim=-1, keepdim=True)
|
1337 |
-
# text_embeds = text_embeds / text_embeds.norm(p=2, dim=-1, keepdim=True)
|
1338 |
-
|
1339 |
-
# # cosine similarity as logits
|
1340 |
-
# logits_per_text = torch.matmul(text_embeds, image_embeds.t()) * self.temperature.exp() + self.bias
|
1341 |
-
# logits_per_image = logits_per_text.t()
|
1342 |
-
|
1343 |
-
# z = torch.matmul(image_embeds, text_embeds.t()) * self.temperature.exp()
|
1344 |
-
|
1345 |
-
# loss = None
|
1346 |
-
# if return_loss:
|
1347 |
-
# raise NotImplementedError("SigLIP loss to be implemented")
|
1348 |
-
|
1349 |
-
# if not return_dict:
|
1350 |
-
# output = (logits_per_image, logits_per_text, text_embeds, image_embeds, text_outputs, vision_outputs)
|
1351 |
-
# return ((loss,) + output) if loss is not None else output
|
1352 |
-
|
1353 |
-
# return SiglipOutput(
|
1354 |
-
# loss=loss,
|
1355 |
-
# logits_per_image=logits_per_image,
|
1356 |
-
# logits_per_text=logits_per_text,
|
1357 |
-
# text_embeds=text_embeds,
|
1358 |
-
# image_embeds=image_embeds,
|
1359 |
-
# text_model_output=text_outputs,
|
1360 |
-
# vision_model_output=vision_outputs,
|
1361 |
-
# )
|
|
|
24 |
from torch import nn
|
25 |
from transformers.activations import ACT2FN
|
26 |
from transformers.modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling
|
|
|
27 |
from transformers.utils import (
|
28 |
ModelOutput,
|
|
|
|
|
29 |
is_flash_attn_2_available,
|
30 |
+
logging,)
|
|
|
|
|
31 |
|
32 |
from .configuration_img2html import Img2HTMLVisionConfig
|
33 |
|
34 |
|
35 |
logger = logging.get_logger(__name__)
|
36 |
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
if is_flash_attn_2_available():
|
39 |
from flash_attn import flash_attn_func, flash_attn_varlen_func
|
|
|
53 |
)
|
54 |
|
55 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
@dataclass
|
57 |
# Copied from transformers.models.clip.modeling_clip.CLIPVisionModelOutput with CLIP->Siglip
|
58 |
class SiglipVisionModelOutput(ModelOutput):
|
|
|
83 |
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
84 |
|
85 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
class SiglipVisionEmbeddings(nn.Module):
|
87 |
def __init__(self, config: Img2HTMLVisionConfig):
|
88 |
super().__init__()
|
|
|
112 |
return embeddings
|
113 |
|
114 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
115 |
# Copied from transformers.models.clip.modeling_clip.CLIPAttention with CLIP->Siglip
|
116 |
class SiglipAttention(nn.Module):
|
117 |
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
|
|
476 |
return outputs
|
477 |
|
478 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
479 |
# Copied from transformers.models.clip.modeling_clip.CLIPEncoder with CLIP->Siglip
|
480 |
class SiglipEncoder(nn.Module):
|
481 |
"""
|
|
|
501 |
output_hidden_states: Optional[bool] = None,
|
502 |
return_dict: Optional[bool] = None,
|
503 |
) -> Union[Tuple, BaseModelOutput]:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
504 |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
505 |
output_hidden_states = (
|
506 |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
|
551 |
)
|
552 |
|
553 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
554 |
class SiglipVisionTransformer(nn.Module):
|
555 |
def __init__(self, config: Img2HTMLVisionConfig):
|
556 |
super().__init__()
|
|
|
562 |
self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
|
563 |
self.head = SiglipMultiheadAttentionPoolingHead(config)
|
564 |
|
|
|
|
|
565 |
def forward(
|
566 |
self,
|
567 |
pixel_values,
|
|
|
628 |
return hidden_state[:, 0]
|
629 |
|
630 |
|
|
|
|
|
|
|
|
|
631 |
class SiglipVisionModel(nn.Module):
|
632 |
def __init__(self, config: Img2HTMLVisionConfig):
|
633 |
super().__init__()
|
634 |
|
635 |
+
self.config = config
|
636 |
self.vision_model = SiglipVisionTransformer(config)
|
637 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
638 |
def forward(
|
639 |
self,
|
640 |
pixel_values,
|
|
|
642 |
output_hidden_states: Optional[bool] = None,
|
643 |
return_dict: Optional[bool] = None,
|
644 |
) -> Union[Tuple, BaseModelOutputWithPooling]:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
645 |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
646 |
|
647 |
return self.vision_model(
|
|
|
650 |
output_hidden_states=output_hidden_states,
|
651 |
return_dict=return_dict,
|
652 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|