align implementation on transformers + include navit style changes (these changes are backward compatible)
e06a98d
# coding=utf-8 | |
# Copyright 2024 The HuggingFace Inc. team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" Tokenization class for SigLIP model.""" | |
import os | |
import re | |
import string | |
import warnings | |
from shutil import copyfile | |
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple | |
import sentencepiece as spm | |
from transformers.convert_slow_tokenizer import import_protobuf | |
from transformers.tokenization_utils import PreTrainedTokenizer | |
from transformers.tokenization_utils_base import AddedToken | |
if TYPE_CHECKING: | |
from transformers.tokenization_utils_base import TextInput | |
from transformers.utils import logging, requires_backends | |
logger = logging.get_logger(__name__) | |
VOCAB_FILES_NAMES = {"vocab_file": "spiece.model"} | |
PRETRAINED_VOCAB_FILES_MAP = { | |
"vocab_file": { | |
"google/siglip-base-patch16-224": "https://huggingface.co/google/siglip-base-patch16-224/resolve/main/spiece.model", | |
} | |
} | |
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { | |
"google/siglip-base-patch16-224": 256, | |
} | |
SPIECE_UNDERLINE = "▁" | |
class SiglipTokenizer(PreTrainedTokenizer): | |
""" | |
Construct a Siglip tokenizer. Based on [SentencePiece](https://github.com/google/sentencepiece). | |
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to | |
this superclass for more information regarding those methods. | |
Args: | |
vocab_file (`str`): | |
[SentencePiece](https://github.com/google/sentencepiece) file (generally has a *.spm* extension) that | |
contains the vocabulary necessary to instantiate a tokenizer. | |
eos_token (`str`, *optional*, defaults to `"</s>"`): | |
The end of sequence token. | |
unk_token (`str`, *optional*, defaults to `"<unk>"`): | |
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this | |
token instead. | |
pad_token (`str`, *optional*, defaults to `"</s>"`): | |
The token used for padding, for example when batching sequences of different lengths. | |
additional_special_tokens (`List[str]`, *optional*): | |
Additional special tokens used by the tokenizer. | |
sp_model_kwargs (`dict`, *optional*): | |
Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for | |
SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things, | |
to set: | |
- `enable_sampling`: Enable subword regularization. | |
- `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout. | |
- `nbest_size = {0,1}`: No sampling is performed. | |
- `nbest_size > 1`: samples from the nbest_size results. | |
- `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice) | |
using forward-filtering-and-backward-sampling algorithm. | |
- `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for | |
BPE-dropout. | |
model_max_length (`int`, *optional*, defaults to 64): | |
The maximum length (in number of tokens) for model inputs. | |
do_lower_case (`bool`, *optional*, defaults to `True`): | |
Whether or not to lowercase the input when tokenizing. | |
""" | |
vocab_files_names = VOCAB_FILES_NAMES | |
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP | |
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES | |
model_input_names = ["input_ids", "attention_mask"] | |
def __init__( | |
self, | |
vocab_file, | |
eos_token="</s>", | |
unk_token="<unk>", | |
pad_token="</s>", | |
additional_special_tokens=None, | |
sp_model_kwargs: Optional[Dict[str, Any]] = None, | |
model_max_length=64, | |
do_lower_case=True, | |
**kwargs, | |
) -> None: | |
requires_backends(self, "protobuf") | |
pad_token = ( | |
AddedToken(pad_token, rstrip=True, lstrip=True, normalized=False, special=True) | |
if isinstance(pad_token, str) | |
else pad_token | |
) | |
unk_token = ( | |
AddedToken(unk_token, rstrip=True, lstrip=True, normalized=False, special=True) | |
if isinstance(unk_token, str) | |
else unk_token | |
) | |
eos_token = ( | |
AddedToken(eos_token, rstrip=True, lstrip=True, normalized=False, special=True) | |
if isinstance(eos_token, str) | |
else eos_token | |
) | |
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs | |
self.do_lower_case = do_lower_case | |
self.vocab_file = vocab_file | |
self.sp_model = self.get_spm_processor() | |
self.vocab_file = vocab_file | |
super().__init__( | |
eos_token=eos_token, | |
unk_token=unk_token, | |
pad_token=pad_token, | |
additional_special_tokens=additional_special_tokens, | |
sp_model_kwargs=self.sp_model_kwargs, | |
model_max_length=model_max_length, | |
do_lower_case=do_lower_case, | |
**kwargs, | |
) | |
def get_spm_processor(self): | |
tokenizer = spm.SentencePieceProcessor(**self.sp_model_kwargs) | |
with open(self.vocab_file, "rb") as f: | |
sp_model = f.read() | |
model_pb2 = import_protobuf() | |
model = model_pb2.ModelProto.FromString(sp_model) | |
normalizer_spec = model_pb2.NormalizerSpec() | |
normalizer_spec.add_dummy_prefix = False | |
model.normalizer_spec.MergeFrom(normalizer_spec) | |
sp_model = model.SerializeToString() | |
tokenizer.LoadFromSerializedProto(sp_model) | |
return tokenizer | |
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.vocab_size | |
def vocab_size(self): | |
return self.sp_model.get_piece_size() | |
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.get_vocab | |
def get_vocab(self): | |
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)} | |
vocab.update(self.added_tokens_encoder) | |
return vocab | |
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.get_special_tokens_mask | |
def get_special_tokens_mask( | |
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False | |
) -> List[int]: | |
""" | |
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding | |
special tokens using the tokenizer `prepare_for_model` method. | |
Args: | |
token_ids_0 (`List[int]`): | |
List of IDs. | |
token_ids_1 (`List[int]`, *optional*): | |
Optional second list of IDs for sequence pairs. | |
already_has_special_tokens (`bool`, *optional*, defaults to `False`): | |
Whether or not the token list is already formatted with special tokens for the model. | |
Returns: | |
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. | |
""" | |
if already_has_special_tokens: | |
return super().get_special_tokens_mask( | |
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True | |
) | |
# normal case: some special tokens | |
if token_ids_1 is None: | |
return ([0] * len(token_ids_0)) + [1] | |
return ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1] | |
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer._add_eos_if_not_present | |
def _add_eos_if_not_present(self, token_ids: List[int]) -> List[int]: | |
"""Do not add eos again if user already added it.""" | |
if len(token_ids) > 0 and token_ids[-1] == self.eos_token_id: | |
warnings.warn( | |
f"This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated" | |
" eos tokens being added." | |
) | |
return token_ids | |
else: | |
return token_ids + [self.eos_token_id] | |
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.create_token_type_ids_from_sequences | |
def create_token_type_ids_from_sequences( | |
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None | |
) -> List[int]: | |
""" | |
Create a mask from the two sequences passed to be used in a sequence-pair classification task. T5 does not make | |
use of token type ids, therefore a list of zeros is returned. | |
Args: | |
token_ids_0 (`List[int]`): | |
List of IDs. | |
token_ids_1 (`List[int]`, *optional*): | |
Optional second list of IDs for sequence pairs. | |
Returns: | |
`List[int]`: List of zeros. | |
""" | |
eos = [self.eos_token_id] | |
if token_ids_1 is None: | |
return len(token_ids_0 + eos) * [0] | |
return len(token_ids_0 + eos + token_ids_1 + eos) * [0] | |
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.build_inputs_with_special_tokens | |
def build_inputs_with_special_tokens( | |
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None | |
) -> List[int]: | |
""" | |
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and | |
adding special tokens. A sequence has the following format: | |
- single sequence: `X </s>` | |
- pair of sequences: `A </s> B </s>` | |
Args: | |
token_ids_0 (`List[int]`): | |
List of IDs to which the special tokens will be added. | |
token_ids_1 (`List[int]`, *optional*): | |
Optional second list of IDs for sequence pairs. | |
Returns: | |
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. | |
""" | |
token_ids_0 = self._add_eos_if_not_present(token_ids_0) | |
if token_ids_1 is None: | |
return token_ids_0 | |
else: | |
token_ids_1 = self._add_eos_if_not_present(token_ids_1) | |
return token_ids_0 + token_ids_1 | |
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.__getstate__ | |
def __getstate__(self): | |
state = self.__dict__.copy() | |
state["sp_model"] = None | |
return state | |
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.__setstate__ | |
def __setstate__(self, d): | |
self.__dict__ = d | |
# for backward compatibility | |
if not hasattr(self, "sp_model_kwargs"): | |
self.sp_model_kwargs = {} | |
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) | |
self.sp_model.Load(self.vocab_file) | |
def remove_punctuation(self, text: str) -> str: | |
return text.translate(str.maketrans("", "", string.punctuation)) | |
# source: https://github.com/google-research/big_vision/blob/3b8e5ab6ad4f96e32b32826f9e1b8fd277914f9c/big_vision/evaluators/proj/image_text/prompt_engineering.py#L94 | |
def canonicalize_text(self, text, *, keep_punctuation_exact_string=None): | |
"""Returns canonicalized `text` (puncuation removed). | |
Args: | |
text (`str`): | |
String to be canonicalized. | |
keep_punctuation_exact_string (`str`, *optional*): | |
If provided, then this exact string is kept. For example providing '{}' will keep any occurrences of '{}' | |
(but will still remove '{' and '}' that appear separately). | |
""" | |
if keep_punctuation_exact_string: | |
text = keep_punctuation_exact_string.join( | |
self.remove_punctuation(part) for part in text.split(keep_punctuation_exact_string) | |
) | |
else: | |
text = self.remove_punctuation(text) | |
text = re.sub(r"\s+", " ", text) | |
text = text.strip() | |
return text | |
def tokenize(self, text: "TextInput", add_special_tokens=False, **kwargs) -> List[str]: | |
""" | |
Converts a string to a list of tokens. | |
""" | |
tokens = super().tokenize(SPIECE_UNDERLINE + text.replace(SPIECE_UNDERLINE, " "), **kwargs) | |
if len(tokens) > 1 and tokens[0] == SPIECE_UNDERLINE and tokens[1] in self.all_special_tokens: | |
tokens = tokens[1:] | |
return tokens | |
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.unk_token_length | |
def unk_token_length(self): | |
return len(self.sp_model.encode(str(self.unk_token))) | |
def _tokenize(self, text, **kwargs): | |
""" | |
Returns a tokenized string. | |
We de-activated the `add_dummy_prefix` option, thus the sentencepiece internals will always strip any | |
SPIECE_UNDERLINE. | |
For example: `self.sp_model.encode(f"{SPIECE_UNDERLINE}Hey", out_type = str)` will give `['H', 'e', 'y']` instead of `['▁He', 'y']`. | |
Thus we always encode `f"{unk_token}text"` and strip the `unk_token`. Here is an example with `unk_token = "<unk>"` and `unk_token_length = 4`. | |
`self.tokenizer.sp_model.encode("<unk> Hey", out_type = str)[4:]`. | |
""" | |
text = self.canonicalize_text(text, keep_punctuation_exact_string=None) | |
tokens = self.sp_model.encode(text, out_type=str) | |
# 1. Encode string + prefix ex: "<unk> Hey" | |
tokens = self.sp_model.encode(self.unk_token + text, out_type=str) | |
# 2. Remove self.unk_token from ['<','unk','>', '▁Hey'] | |
return tokens[self.unk_token_length :] if len(tokens) >= self.unk_token_length else tokens | |
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer._convert_token_to_id | |
def _convert_token_to_id(self, token): | |
"""Converts a token (str) in an id using the vocab.""" | |
return self.sp_model.piece_to_id(token) | |
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer._convert_id_to_token | |
def _convert_id_to_token(self, index): | |
"""Converts an index (integer) in a token (str) using the vocab.""" | |
token = self.sp_model.IdToPiece(index) | |
return token | |
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.convert_tokens_to_string | |
def convert_tokens_to_string(self, tokens): | |
"""Converts a sequence of tokens (string) in a single string.""" | |
current_sub_tokens = [] | |
# since we manually add the prefix space, we have to remove it | |
tokens[0] = tokens[0].lstrip(SPIECE_UNDERLINE) | |
out_string = "" | |
prev_is_special = False | |
for token in tokens: | |
# make sure that special tokens are not decoded using sentencepiece model | |
if token in self.all_special_tokens: | |
if not prev_is_special: | |
out_string += " " | |
out_string += self.sp_model.decode(current_sub_tokens) + token | |
prev_is_special = True | |
current_sub_tokens = [] | |
else: | |
current_sub_tokens.append(token) | |
prev_is_special = False | |
out_string += self.sp_model.decode(current_sub_tokens) | |
return out_string.strip() | |
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.save_vocabulary | |
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: | |
if not os.path.isdir(save_directory): | |
logger.error(f"Vocabulary path ({save_directory}) should be a directory") | |
return | |
out_vocab_file = os.path.join( | |
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] | |
) | |
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file): | |
copyfile(self.vocab_file, out_vocab_file) | |
elif not os.path.isfile(self.vocab_file): | |
with open(out_vocab_file, "wb") as fi: | |
content_spiece_model = self.sp_model.serialized_model_proto() | |
fi.write(content_spiece_model) | |
return (out_vocab_file,) | |