Update README.md
Browse files
README.md
CHANGED
@@ -1,199 +1,134 @@
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
-
|
|
|
|
|
4 |
---
|
5 |
|
6 |
-
# Model Card for Model ID
|
7 |
|
8 |
-
|
9 |
|
|
|
10 |
|
|
|
11 |
|
12 |
-
|
|
|
|
|
|
|
|
|
13 |
|
14 |
-
|
15 |
|
16 |
-
|
17 |
|
18 |
-
|
19 |
|
20 |
-
-
|
21 |
-
- **Funded by [optional]:** [More Information Needed]
|
22 |
-
- **Shared by [optional]:** [More Information Needed]
|
23 |
-
- **Model type:** [More Information Needed]
|
24 |
-
- **Language(s) (NLP):** [More Information Needed]
|
25 |
-
- **License:** [More Information Needed]
|
26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
|
28 |
-
### Model Sources [optional]
|
29 |
|
30 |
-
|
31 |
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
|
36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
[More Information Needed]
|
57 |
-
|
58 |
-
## Bias, Risks, and Limitations
|
59 |
-
|
60 |
-
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
-
|
62 |
-
[More Information Needed]
|
63 |
-
|
64 |
-
### Recommendations
|
65 |
-
|
66 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
-
|
68 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
-
|
70 |
-
## How to Get Started with the Model
|
71 |
-
|
72 |
-
Use the code below to get started with the model.
|
73 |
-
|
74 |
-
[More Information Needed]
|
75 |
-
|
76 |
-
## Training Details
|
77 |
-
|
78 |
-
### Training Data
|
79 |
-
|
80 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
-
|
82 |
-
[More Information Needed]
|
83 |
-
|
84 |
-
### Training Procedure
|
85 |
-
|
86 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
-
|
88 |
-
#### Preprocessing [optional]
|
89 |
-
|
90 |
-
[More Information Needed]
|
91 |
-
|
92 |
-
|
93 |
-
#### Training Hyperparameters
|
94 |
-
|
95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
-
|
97 |
-
#### Speeds, Sizes, Times [optional]
|
98 |
-
|
99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
|
103 |
## Evaluation
|
104 |
|
105 |
-
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
|
163 |
-
|
164 |
|
165 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
166 |
|
167 |
-
#### Software
|
168 |
|
169 |
-
|
170 |
|
171 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
172 |
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
|
175 |
-
**BibTeX:**
|
176 |
|
177 |
-
|
178 |
|
179 |
-
|
180 |
|
181 |
-
|
182 |
|
183 |
-
|
184 |
|
185 |
-
|
|
|
|
|
186 |
|
187 |
-
|
188 |
|
189 |
-
|
190 |
|
191 |
-
|
192 |
|
193 |
-
|
194 |
|
195 |
-
|
196 |
|
197 |
-
|
198 |
|
199 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
+
license: apache-2.0
|
4 |
+
language:
|
5 |
+
- en
|
6 |
---
|
7 |
|
|
|
8 |
|
9 |
+
# SmolLM2
|
10 |
|
11 |
+
![image/png](https://cdn-uploads.huggingface.co/production/uploads/61c141342aac764ce1654e43/7IzejwZJ62MfRwvDYvQXY.png)
|
12 |
|
13 |
+
## Table of Contents
|
14 |
|
15 |
+
1. [Model Summary](##model-summary)
|
16 |
+
2. [Limitations](##limitations)
|
17 |
+
3. [Training](##training)
|
18 |
+
4. [License](##license)
|
19 |
+
5. [Citation](##citation)
|
20 |
|
21 |
+
## Model Summary
|
22 |
|
23 |
+
SmolLM2 is a family of compact language models available in three size: 135M, 360M, and 1.7B parameters. They are capable of solving a wide range of tasks while being lightweight enough to run on-device.
|
24 |
|
25 |
+
SmolLM2 demonstrates significant advances over its predecessor SmolLM1, particularly in instruction following, knowledge, reasoning. The 135M model was trained on 2 trillion tokens using a diverse dataset combination: FineWeb-Edu, DCLM, The Stack, along with new filtered datasets we curated and will release soon.
|
26 |
|
27 |
+
We developed the instruct version through supervised fine-tuning (SFT) using a combination of public datasets and our own curated datasets, designed to enhance instruction following, rewriting, and summarization capabilities. We then applied Direct Preference Optimization (DPO) using a mix of UltraFeedback and DPO-ORPO.
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
|
|
29 |
|
30 |
+
### How to use
|
31 |
|
32 |
+
```bash
|
33 |
+
pip install transformers
|
34 |
+
```
|
35 |
|
36 |
+
#### Running the model on CPU/GPU/multi GPU
|
37 |
+
* _Using full precision_
|
38 |
+
```python
|
39 |
+
# pip install transformers
|
40 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
41 |
+
checkpoint = "HuggingFaceTB/SmolLM2-135M"
|
42 |
+
device = "cuda" # for GPU usage or "cpu" for CPU usage
|
43 |
+
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
|
44 |
+
# for multiple GPUs install accelerate and do `model = AutoModelForCausalLM.from_pretrained(checkpoint, device_map="auto")`
|
45 |
+
model = AutoModelForCausalLM.from_pretrained(checkpoint).to(device)
|
46 |
+
inputs = tokenizer.encode("Gravity is", return_tensors="pt").to(device)
|
47 |
+
outputs = model.generate(inputs)
|
48 |
+
print(tokenizer.decode(outputs[0]))
|
49 |
+
```
|
50 |
|
51 |
+
* _Using `torch.bfloat16`_
|
52 |
+
```python
|
53 |
+
# pip install accelerate
|
54 |
+
import torch
|
55 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
56 |
+
checkpoint = "HuggingFaceTB/SmolLM2-135M"
|
57 |
+
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
|
58 |
+
# for fp16 use `torch_dtype=torch.float16` instead
|
59 |
+
model = AutoModelForCausalLM.from_pretrained(checkpoint, device_map="auto", torch_dtype=torch.bfloat16)
|
60 |
+
inputs = tokenizer.encode("Gravity is", return_tensors="pt").to("cuda")
|
61 |
+
outputs = model.generate(inputs)
|
62 |
+
print(tokenizer.decode(outputs[0]))
|
63 |
+
```
|
64 |
+
```bash
|
65 |
+
>>> print(f"Memory footprint: {model.get_memory_footprint() / 1e6:.2f} MB")
|
66 |
+
Memory footprint: 723.56 MB
|
67 |
+
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
|
69 |
## Evaluation
|
70 |
|
71 |
+
In this section, we report the evaluation results of SmolLM2. All evaluations are zero-shot unless stated otherwise, and we use [lighteval](https://github.com/huggingface/lighteval) to run them.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
|
73 |
+
## Base pre-trained model
|
74 |
|
75 |
+
| Metrics | SmolLM2-135M-8k | SmolLM-135M |
|
76 |
+
|:-------------------|:----------------:|:------------:|
|
77 |
+
| HellaSwag | **42.1** | 41.2 |
|
78 |
+
| ARC (Average) | **43.9** | 42.4 |
|
79 |
+
| PIQA | 68.4 | 68.4 |
|
80 |
+
| MMLU (cloze) | **31.5** | 30.2 |
|
81 |
+
| CommonsenseQA | **33.9** | 32.7 |
|
82 |
+
| TriviaQA | 4.1 | **4.3** |
|
83 |
+
| Winogrande | 51.3 | 51.3 |
|
84 |
+
| OpenBookQA | **34.6** | 34.0 |
|
85 |
+
| GSM8K (5-shot) | **1.4** | 1.0 |
|
86 |
|
|
|
87 |
|
88 |
+
## Instruction model
|
89 |
|
90 |
+
| Metric | SmolLM2-135M-Instruct | SmolLM-135M-Instruct |
|
91 |
+
|:-----------------------------|:---------------------:|:--------------------:|
|
92 |
+
| IFEval (Average prompt/inst) | **29.9** | 17.2 |
|
93 |
+
| MT-Bench | **1.98** | 1.68 |
|
94 |
+
| HellaSwag | **40.9** | 38.9 |
|
95 |
+
| ARC (Average) | **37.3** | 33.9 |
|
96 |
+
| PIQA | **66.3** | 64.0 |
|
97 |
+
| MMLU (cloze) | **29.3** | 28.3 |
|
98 |
+
| BBH (3-shot) | **28.2** | 25.2 |
|
99 |
+
| GSM8K (5-shot) | 1.4 | 1.4 |
|
100 |
|
|
|
101 |
|
|
|
102 |
|
103 |
+
## Limitations
|
104 |
|
105 |
+
SmolLM2 models primarily understand and generate content in English. They can produce text on a variety of topics, but the generated content may not always be factually accurate, logically consistent, or free from biases present in the training data. These models should be used as assistive tools rather than definitive sources of information. Users should always verify important information and critically evaluate any generated content.
|
106 |
|
107 |
+
## Training
|
108 |
|
109 |
+
### Model
|
110 |
|
111 |
+
- **Architecture:** Transformer decoder
|
112 |
+
- **Pretraining tokens:** 4T
|
113 |
+
- **Precision:** bfloat16
|
114 |
|
115 |
+
### Hardware
|
116 |
|
117 |
+
- **GPUs:** 64 H100
|
118 |
|
119 |
+
### Software
|
120 |
|
121 |
+
- **Training Framework:** [nanotron](https://github.com/huggingface/nanotron/tree/main)
|
122 |
|
123 |
+
## License
|
124 |
|
125 |
+
[Apache 2.0](https://www.apache.org/licenses/LICENSE-2.0)
|
126 |
|
127 |
+
## Citation
|
128 |
+
```bash
|
129 |
+
@misc{allal2024SmolLM2,
|
130 |
+
title={SmolLM2 - with great data, comes great performance},
|
131 |
+
author={Loubna Ben Allal and Anton Lozhkov and Elie Bakouch and Gabriel Martín Blázquez and Lewis Tunstall and Agustín Piqueres and Andres Marafioti and Cyril Zakka and Leandro von Werra and Thomas Wolf},
|
132 |
+
year={2024},
|
133 |
+
}
|
134 |
+
```
|