eliebak HF staff commited on
Commit
f102afc
1 Parent(s): ab35b5b

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +95 -160
README.md CHANGED
@@ -1,199 +1,134 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
 
10
 
 
11
 
12
- ## Model Details
 
 
 
 
13
 
14
- ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
 
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
29
 
30
- <!-- Provide the basic links for the model. -->
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
- ## Uses
 
 
 
 
 
 
 
 
 
 
 
 
 
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
 
103
  ## Evaluation
104
 
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
 
163
- #### Hardware
164
 
165
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
166
 
167
- #### Software
168
 
169
- [More Information Needed]
170
 
171
- ## Citation [optional]
 
 
 
 
 
 
 
 
 
172
 
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
 
175
- **BibTeX:**
176
 
177
- [More Information Needed]
178
 
179
- **APA:**
180
 
181
- [More Information Needed]
182
 
183
- ## Glossary [optional]
184
 
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
 
 
186
 
187
- [More Information Needed]
188
 
189
- ## More Information [optional]
190
 
191
- [More Information Needed]
192
 
193
- ## Model Card Authors [optional]
194
 
195
- [More Information Needed]
196
 
197
- ## Model Card Contact
198
 
199
- [More Information Needed]
 
 
 
 
 
 
 
 
1
  ---
2
  library_name: transformers
3
+ license: apache-2.0
4
+ language:
5
+ - en
6
  ---
7
 
 
8
 
9
+ # SmolLM2
10
 
11
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/61c141342aac764ce1654e43/7IzejwZJ62MfRwvDYvQXY.png)
12
 
13
+ ## Table of Contents
14
 
15
+ 1. [Model Summary](##model-summary)
16
+ 2. [Limitations](##limitations)
17
+ 3. [Training](##training)
18
+ 4. [License](##license)
19
+ 5. [Citation](##citation)
20
 
21
+ ## Model Summary
22
 
23
+ SmolLM2 is a family of compact language models available in three size: 135M, 360M, and 1.7B parameters. They are capable of solving a wide range of tasks while being lightweight enough to run on-device.
24
 
25
+ SmolLM2 demonstrates significant advances over its predecessor SmolLM1, particularly in instruction following, knowledge, reasoning. The 135M model was trained on 2 trillion tokens using a diverse dataset combination: FineWeb-Edu, DCLM, The Stack, along with new filtered datasets we curated and will release soon.
26
 
27
+ We developed the instruct version through supervised fine-tuning (SFT) using a combination of public datasets and our own curated datasets, designed to enhance instruction following, rewriting, and summarization capabilities. We then applied Direct Preference Optimization (DPO) using a mix of UltraFeedback and DPO-ORPO.
 
 
 
 
 
 
28
 
 
29
 
30
+ ### How to use
31
 
32
+ ```bash
33
+ pip install transformers
34
+ ```
35
 
36
+ #### Running the model on CPU/GPU/multi GPU
37
+ * _Using full precision_
38
+ ```python
39
+ # pip install transformers
40
+ from transformers import AutoModelForCausalLM, AutoTokenizer
41
+ checkpoint = "HuggingFaceTB/SmolLM2-135M"
42
+ device = "cuda" # for GPU usage or "cpu" for CPU usage
43
+ tokenizer = AutoTokenizer.from_pretrained(checkpoint)
44
+ # for multiple GPUs install accelerate and do `model = AutoModelForCausalLM.from_pretrained(checkpoint, device_map="auto")`
45
+ model = AutoModelForCausalLM.from_pretrained(checkpoint).to(device)
46
+ inputs = tokenizer.encode("Gravity is", return_tensors="pt").to(device)
47
+ outputs = model.generate(inputs)
48
+ print(tokenizer.decode(outputs[0]))
49
+ ```
50
 
51
+ * _Using `torch.bfloat16`_
52
+ ```python
53
+ # pip install accelerate
54
+ import torch
55
+ from transformers import AutoTokenizer, AutoModelForCausalLM
56
+ checkpoint = "HuggingFaceTB/SmolLM2-135M"
57
+ tokenizer = AutoTokenizer.from_pretrained(checkpoint)
58
+ # for fp16 use `torch_dtype=torch.float16` instead
59
+ model = AutoModelForCausalLM.from_pretrained(checkpoint, device_map="auto", torch_dtype=torch.bfloat16)
60
+ inputs = tokenizer.encode("Gravity is", return_tensors="pt").to("cuda")
61
+ outputs = model.generate(inputs)
62
+ print(tokenizer.decode(outputs[0]))
63
+ ```
64
+ ```bash
65
+ >>> print(f"Memory footprint: {model.get_memory_footprint() / 1e6:.2f} MB")
66
+ Memory footprint: 723.56 MB
67
+ ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
68
 
69
  ## Evaluation
70
 
71
+ In this section, we report the evaluation results of SmolLM2. All evaluations are zero-shot unless stated otherwise, and we use [lighteval](https://github.com/huggingface/lighteval) to run them.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
72
 
73
+ ## Base pre-trained model
74
 
75
+ | Metrics | SmolLM2-135M-8k | SmolLM-135M |
76
+ |:-------------------|:----------------:|:------------:|
77
+ | HellaSwag | **42.1** | 41.2 |
78
+ | ARC (Average) | **43.9** | 42.4 |
79
+ | PIQA | 68.4 | 68.4 |
80
+ | MMLU (cloze) | **31.5** | 30.2 |
81
+ | CommonsenseQA | **33.9** | 32.7 |
82
+ | TriviaQA | 4.1 | **4.3** |
83
+ | Winogrande | 51.3 | 51.3 |
84
+ | OpenBookQA | **34.6** | 34.0 |
85
+ | GSM8K (5-shot) | **1.4** | 1.0 |
86
 
 
87
 
88
+ ## Instruction model
89
 
90
+ | Metric | SmolLM2-135M-Instruct | SmolLM-135M-Instruct |
91
+ |:-----------------------------|:---------------------:|:--------------------:|
92
+ | IFEval (Average prompt/inst) | **29.9** | 17.2 |
93
+ | MT-Bench | **1.98** | 1.68 |
94
+ | HellaSwag | **40.9** | 38.9 |
95
+ | ARC (Average) | **37.3** | 33.9 |
96
+ | PIQA | **66.3** | 64.0 |
97
+ | MMLU (cloze) | **29.3** | 28.3 |
98
+ | BBH (3-shot) | **28.2** | 25.2 |
99
+ | GSM8K (5-shot) | 1.4 | 1.4 |
100
 
 
101
 
 
102
 
103
+ ## Limitations
104
 
105
+ SmolLM2 models primarily understand and generate content in English. They can produce text on a variety of topics, but the generated content may not always be factually accurate, logically consistent, or free from biases present in the training data. These models should be used as assistive tools rather than definitive sources of information. Users should always verify important information and critically evaluate any generated content.
106
 
107
+ ## Training
108
 
109
+ ### Model
110
 
111
+ - **Architecture:** Transformer decoder
112
+ - **Pretraining tokens:** 4T
113
+ - **Precision:** bfloat16
114
 
115
+ ### Hardware
116
 
117
+ - **GPUs:** 64 H100
118
 
119
+ ### Software
120
 
121
+ - **Training Framework:** [nanotron](https://github.com/huggingface/nanotron/tree/main)
122
 
123
+ ## License
124
 
125
+ [Apache 2.0](https://www.apache.org/licenses/LICENSE-2.0)
126
 
127
+ ## Citation
128
+ ```bash
129
+ @misc{allal2024SmolLM2,
130
+ title={SmolLM2 - with great data, comes great performance},
131
+ author={Loubna Ben Allal and Anton Lozhkov and Elie Bakouch and Gabriel Martín Blázquez and Lewis Tunstall and Agustín Piqueres and Andres Marafioti and Cyril Zakka and Leandro von Werra and Thomas Wolf},
132
+ year={2024},
133
+ }
134
+ ```