andito HF staff commited on
Commit
bc636e4
1 Parent(s): 2ef50ab

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +3 -111
README.md CHANGED
@@ -146,122 +146,14 @@ We release the SmolVLM checkpoints under the Apache 2.0 license.
146
 
147
  ![Data mixture](mixture_the_cauldron.png)
148
 
149
- The training data can be consulted in ![Training data](smolvlm-data.pdf)
150
 
151
 
152
- ### Training Procedure
153
-
154
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
155
-
156
- #### Preprocessing [optional]
157
-
158
- [More Information Needed]
159
-
160
-
161
- #### Training Hyperparameters
162
-
163
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
164
-
165
  #### Speeds, Sizes, Times [optional]
166
 
167
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
168
-
169
- [More Information Needed]
170
 
171
  ## Evaluation
172
 
173
- <!-- This section describes the evaluation protocols and provides the results. -->
174
-
175
- ### Testing Data, Factors & Metrics
176
-
177
- #### Testing Data
178
-
179
- <!-- This should link to a Dataset Card if possible. -->
180
-
181
- [More Information Needed]
182
-
183
- #### Factors
184
-
185
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
186
-
187
- [More Information Needed]
188
-
189
- #### Metrics
190
-
191
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
192
-
193
- [More Information Needed]
194
-
195
- ### Results
196
-
197
- [More Information Needed]
198
-
199
- #### Summary
200
-
201
-
202
-
203
- ## Model Examination [optional]
204
-
205
- <!-- Relevant interpretability work for the model goes here -->
206
-
207
- [More Information Needed]
208
-
209
- ## Environmental Impact
210
-
211
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
212
-
213
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
214
-
215
- - **Hardware Type:** [More Information Needed]
216
- - **Hours used:** [More Information Needed]
217
- - **Cloud Provider:** [More Information Needed]
218
- - **Compute Region:** [More Information Needed]
219
- - **Carbon Emitted:** [More Information Needed]
220
-
221
- ## Technical Specifications [optional]
222
-
223
- ### Model Architecture and Objective
224
-
225
- [More Information Needed]
226
-
227
- ### Compute Infrastructure
228
-
229
- [More Information Needed]
230
-
231
- #### Hardware
232
-
233
- [More Information Needed]
234
-
235
- #### Software
236
-
237
- [More Information Needed]
238
-
239
- ## Citation [optional]
240
-
241
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
242
-
243
- **BibTeX:**
244
-
245
- [More Information Needed]
246
-
247
- **APA:**
248
-
249
- [More Information Needed]
250
-
251
- ## Glossary [optional]
252
-
253
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
254
-
255
- [More Information Needed]
256
-
257
- ## More Information [optional]
258
-
259
- [More Information Needed]
260
-
261
- ## Model Card Authors [optional]
262
-
263
- [More Information Needed]
264
-
265
- ## Model Card Contact
266
 
267
- [More Information Needed]
 
146
 
147
  ![Data mixture](mixture_the_cauldron.png)
148
 
149
+ The training data is: ![Training data](smolvlm-data.pdf)
150
 
151
 
 
 
 
 
 
 
 
 
 
 
 
 
 
152
  #### Speeds, Sizes, Times [optional]
153
 
154
+ TODO
 
 
155
 
156
  ## Evaluation
157
 
158
+ TODO
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
159