ernestum commited on
Commit
87dcc80
1 Parent(s): 5ad211d

Initial commit

Browse files
README.md CHANGED
@@ -10,7 +10,7 @@ model-index:
10
  results:
11
  - metrics:
12
  - type: mean_reward
13
- value: 1185.21 +/- 557.92
14
  name: mean_reward
15
  task:
16
  type: reinforcement-learning
@@ -37,15 +37,21 @@ SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
37
 
38
  ```
39
  # Download model and save it into the logs/ folder
40
- python -m utils.load_from_hub --algo ppo --env seals/Ant-v0 -orga HumanCompatibleAI -f logs/
41
  python enjoy.py --algo ppo --env seals/Ant-v0 -f logs/
42
  ```
43
 
 
 
 
 
 
 
44
  ## Training (with the RL Zoo)
45
  ```
46
  python train.py --algo ppo --env seals/Ant-v0 -f logs/
47
  # Upload the model and generate video (when possible)
48
- python -m utils.push_to_hub --algo ppo --env seals/Ant-v0 -f logs/ -orga HumanCompatibleAI
49
  ```
50
 
51
  ## Hyperparameters
@@ -60,11 +66,17 @@ OrderedDict([('batch_size', 16),
60
  ('n_epochs', 10),
61
  ('n_steps', 2048),
62
  ('n_timesteps', 1000000.0),
63
- ('normalize', True),
 
64
  ('policy', 'MlpPolicy'),
65
  ('policy_kwargs',
66
- 'dict(activation_fn=nn.Tanh, net_arch=[dict(pi=[64, 64], vf=[64, '
67
- '64])])'),
 
68
  ('vf_coef', 0.4351450387648799),
69
- ('normalize_kwargs', {'norm_obs': True, 'norm_reward': False})])
 
 
 
 
70
  ```
 
10
  results:
11
  - metrics:
12
  - type: mean_reward
13
+ value: 3034.50 +/- 1124.70
14
  name: mean_reward
15
  task:
16
  type: reinforcement-learning
 
37
 
38
  ```
39
  # Download model and save it into the logs/ folder
40
+ python -m rl_zoo3.load_from_hub --algo ppo --env seals/Ant-v0 -orga HumanCompatibleAI -f logs/
41
  python enjoy.py --algo ppo --env seals/Ant-v0 -f logs/
42
  ```
43
 
44
+ If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
45
+ ```
46
+ python -m rl_zoo3.load_from_hub --algo ppo --env seals/Ant-v0 -orga HumanCompatibleAI -f logs/
47
+ rl_zoo3 enjoy --algo ppo --env seals/Ant-v0 -f logs/
48
+ ```
49
+
50
  ## Training (with the RL Zoo)
51
  ```
52
  python train.py --algo ppo --env seals/Ant-v0 -f logs/
53
  # Upload the model and generate video (when possible)
54
+ python -m rl_zoo3.push_to_hub --algo ppo --env seals/Ant-v0 -f logs/ -orga HumanCompatibleAI
55
  ```
56
 
57
  ## Hyperparameters
 
66
  ('n_epochs', 10),
67
  ('n_steps', 2048),
68
  ('n_timesteps', 1000000.0),
69
+ ('normalize',
70
+ {'gamma': 0.995, 'norm_obs': False, 'norm_reward': True}),
71
  ('policy', 'MlpPolicy'),
72
  ('policy_kwargs',
73
+ {'activation_fn': <class 'torch.nn.modules.activation.Tanh'>,
74
+ 'features_extractor_class': <class 'imitation.policies.base.NormalizeFeaturesExtractor'>,
75
+ 'net_arch': [{'pi': [64, 64], 'vf': [64, 64]}]}),
76
  ('vf_coef', 0.4351450387648799),
77
+ ('normalize_kwargs',
78
+ {'norm_obs': {'gamma': 0.995,
79
+ 'norm_obs': False,
80
+ 'norm_reward': True},
81
+ 'norm_reward': False})])
82
  ```
args.yml CHANGED
@@ -1,6 +1,8 @@
1
  !!python/object/apply:collections.OrderedDict
2
  - - - algo
3
  - ppo
 
 
4
  - - device
5
  - cpu
6
  - - env
@@ -16,7 +18,7 @@
16
  - - hyperparams
17
  - null
18
  - - log_folder
19
- - seals_experts_wandb_oldpickle/seed_6/
20
  - - log_interval
21
  - -1
22
  - - max_total_trials
@@ -41,6 +43,8 @@
41
  - null
42
  - - optimize_hyperparameters
43
  - false
 
 
44
  - - pruner
45
  - median
46
  - - sampler
@@ -56,7 +60,7 @@
56
  - - study_name
57
  - null
58
  - - tensorboard_log
59
- - runs/seals/Ant-v0__ppo__6__1658839810
60
  - - track
61
  - true
62
  - - trained_agent
@@ -70,6 +74,8 @@
70
  - - verbose
71
  - 1
72
  - - wandb_entity
73
- - null
74
  - - wandb_project_name
75
- - seals-experts-oldpickle
 
 
 
1
  !!python/object/apply:collections.OrderedDict
2
  - - - algo
3
  - ppo
4
+ - - conf_file
5
+ - hyperparams/python/ppo.py
6
  - - device
7
  - cpu
8
  - - env
 
18
  - - hyperparams
19
  - null
20
  - - log_folder
21
+ - logs
22
  - - log_interval
23
  - -1
24
  - - max_total_trials
 
43
  - null
44
  - - optimize_hyperparameters
45
  - false
46
+ - - progress
47
+ - false
48
  - - pruner
49
  - median
50
  - - sampler
 
60
  - - study_name
61
  - null
62
  - - tensorboard_log
63
+ - runs/seals/Ant-v0__ppo__6__1670517965
64
  - - track
65
  - true
66
  - - trained_agent
 
74
  - - verbose
75
  - 1
76
  - - wandb_entity
77
+ - ernestum
78
  - - wandb_project_name
79
+ - seals-experts-normalized
80
+ - - yaml_file
81
+ - null
config.yml CHANGED
@@ -20,10 +20,20 @@
20
  - - n_timesteps
21
  - 1000000.0
22
  - - normalize
23
- - true
 
 
24
  - - policy
25
  - MlpPolicy
26
  - - policy_kwargs
27
- - dict(activation_fn=nn.Tanh, net_arch=[dict(pi=[64, 64], vf=[64, 64])])
 
 
 
 
 
 
 
 
28
  - - vf_coef
29
  - 0.4351450387648799
 
20
  - - n_timesteps
21
  - 1000000.0
22
  - - normalize
23
+ - gamma: 0.995
24
+ norm_obs: false
25
+ norm_reward: true
26
  - - policy
27
  - MlpPolicy
28
  - - policy_kwargs
29
+ - activation_fn: !!python/name:torch.nn.modules.activation.Tanh ''
30
+ features_extractor_class: !!python/name:imitation.policies.base.NormalizeFeaturesExtractor ''
31
+ net_arch:
32
+ - pi:
33
+ - 64
34
+ - 64
35
+ vf:
36
+ - 64
37
+ - 64
38
  - - vf_coef
39
  - 0.4351450387648799
ppo-seals-Ant-v0.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:4a7f4f3680a55594f769c006d119e18bc5986c0acda722f941ec55e2d714e7cc
3
- size 326656
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1a6b9a42330bc2c39b68b9f94073db60c819a5ff57b5b22c59a05733f9d66b71
3
+ size 325290
ppo-seals-Ant-v0/_stable_baselines3_version CHANGED
@@ -1 +1 @@
1
- 1.6.0
 
1
+ 1.6.2
ppo-seals-Ant-v0/data CHANGED
@@ -4,24 +4,24 @@
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function ActorCriticPolicy.__init__ at 0x7fa1852e88b0>",
8
- "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fa1852e8940>",
9
- "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fa1852e89d0>",
10
- "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fa1852e8a60>",
11
- "_build": "<function ActorCriticPolicy._build at 0x7fa1852e8af0>",
12
- "forward": "<function ActorCriticPolicy.forward at 0x7fa1852e8b80>",
13
- "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fa1852e8c10>",
14
- "_predict": "<function ActorCriticPolicy._predict at 0x7fa1852e8ca0>",
15
- "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fa1852e8d30>",
16
- "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fa1852e8dc0>",
17
- "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fa1852e8e50>",
18
  "__abstractmethods__": "frozenset()",
19
- "_abc_impl": "<_abc_data object at 0x7fa1852dde70>"
20
  },
21
  "verbose": 1,
22
  "policy_kwargs": {
23
  ":type:": "<class 'dict'>",
24
- ":serialized:": "gAWVaAAAAAAAAAB9lCiMDWFjdGl2YXRpb25fZm6UjBt0b3JjaC5ubi5tb2R1bGVzLmFjdGl2YXRpb26UjARUYW5olJOUjAhuZXRfYXJjaJRdlH2UKIwCcGmUXZQoS0BLQGWMAnZmlF2UKEtAS0BldWF1Lg==",
25
  "activation_fn": "<class 'torch.nn.modules.activation.Tanh'>",
26
  "net_arch": [
27
  {
@@ -34,7 +34,8 @@
34
  64
35
  ]
36
  }
37
- ]
 
38
  },
39
  "observation_space": {
40
  ":type:": "<class 'gym.spaces.box.Box'>",
@@ -51,7 +52,7 @@
51
  },
52
  "action_space": {
53
  ":type:": "<class 'gym.spaces.box.Box'>",
54
- ":serialized:": "gAWVJwwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaDCMBXN0YXRllH2UKIwDa2V5lGgSKJbACQAAAAAAAAAAAIBTwrOchwO1k3Lsq1vo5rLyz7aB2tUG72GhMU2ga7XM2RPmGJ90nHkvyKUbgMR5AUmeD0PkXeAYk5ITVczUSilk0giVvjTQnkRyegPwrb8Kc5t7PulgsQbadQNFC2591hZq6wQ0ZoO38/WlL2nvQmNDtVz3wndSzEZENy0IiW7Qjq53+xi2gE97nvlPMuwS2LmOXoWpGcquPXYtZytCgJ7F7scf9SIBXUvPJA/MGVJkRFeYcJ0K9RIXtela3jvE/0HPOrFftofdM9hYiaqizX97P8mUt2wPQx8xmX0bYJCrtwcdGUzeyPuOugD1z6ka3iX+IAalFvzQduPBTvXKQ9MBWnnfUFetzaqYhTrP0WHhMA/Ht9nWRUX4vUiuWi77gKSTLtizn2cHsqRyJMj43mOVvrbJtm3T5laAgDosou93H+ZNC0HiTVqmVP8Lsv3/JsoIWfaq43/tiUiTGgfVTTF1psbquA6tH5Icya9TC+0oH7X0htvTuZKBVDKM0C+fIAM8l/emTHKVm2ft/85WlYRpZ+XoFwvDLSCusSBQr4f7w/xdYy4GCKdeDDOfezLj5k6WvjminpO26pfQqfP9LJIYOUEgrwmoo5vMHp8a36i8kcQzwqUvi94rCQuS64xYFp7HcUF1aySvLmqGyXEyCeTa2GHwNpeYB9u4jyPRKocxbWSV4hOL16R9fH95KLmFfUaMD8zrZmLG5rLUfzMf1WOxNFwZpzInS+HWE1F4MWg2xcVst8upoi9ssNCNjtPbz1ley6m8DG7YZVNupay35yQ8/PAfu8uKRQsL7B4ArDFquqb66ABeDLPvviZ4c6y9Bi67Xye+uu6eNlYO/Boq5iiETBR9Kemi0T1eFf33JRNzywY9CJ1N9eTOb+3wxY/yK3iXhVISAMufwZby3YMCHwTAVr8o4ahkQaNipnYgwDvQT4XYuqBpmVAsUw41MjHfK43kXZ7UxPi/bB0FEr1H6UYynEiI2V3I7DDEsMFNEMyF3sA+J2YPBAGe9oh5woVr3lu3AeREERRPmD778jQMODrzkRfg4w7Zi1M+ozc9CW5Lim4SEBBFW6Q0ZKHiBgOBwE8pmXhOE1/4b4TsSX1+ZYlw/f1KJ/Doyf4YSKwzVGEdjTldkdS/lbivyQPaNIsxj4ggvb4u1CtbuK3vLbz6wSJwugR9g6TL1kkXqXR9H6xcRrB/5EQf0u+1EnjLN/GvsqKw2mvVrG/Vp7kINdL5dPO44b8Emce+3xqudjVdYf1J2QI56iTowjwYEK2NMLEnklukjknSLQDrqYlpFb0sx8/oKKXf9xVFD243YpO1XejusnBjhcKePsMmaqtTCh8MOXsSTQ+g3vDQeHxgc7LyqE/DtXwAt2Nmft5i2MJAiV1C8dszUjvdG0ItC9AYUxdQInTbakZGpO9lfldZKLOpuBfpMmYjosMX3Bylh5qUHtwPB6V+p2nMdGbKNFshf1v7Di6P/9oNGA/ZKCI4Cr8P/3/RJuAr8TQVDJyWE1UCRsrBeEDEoZzOm8mjDSYUVQC3/l9PkoCyZBMC3ynQWysYwNN+ThHNmCplKb6KFVFLfvVPHe3CkYDWCij8Ah8mHyyUkLeGRHU4YI3ssA8YLBsz2seUpJTi66EmJ9/X3qH2rWQ8yV3r3z0x8otWS8KXuh8JG6s9Rbjpx4koT3nWxAPW/xwrQcrUma4FMJcB6UJQIgU0saTe0xc1Wa64UXejfFvhXhPUgBgh8F3IRUeEghk4T8kRjv11pDDyeNgS1DpjBnqQ0IFh+uOrY6CUhNxF3AOYg0vjaujoedtaAtlDwJ78SI9UG1YfCG8ZQcrUU043NHNeBPXMoSD5YCKB64rhBUjF0hMzhi9TJi+lAm4l37EYPWejsFggpd1XhoOWxGdZIyZL7NPJO8LT5OAEwI2ky90KGNoH9dOsxWybS+A+YJizCfTrsxNhZ+bmgKqqY1yKqhF8UvY7abEVPVUxwoOvEcF0FSFIblSYB6vHzooATK1uwJufo46PxjTZXBXKfNd3RYl8uKh4YxkhIzV6d5Z9NzWZDoKl0PEmpSZTzr8qwEvcFvRLY0CoXKwUlkrEPAt6PzHP7EfwjEQfOWSKI0f7YgirTrrcUDCLrCDp2ByvIOpD6U0PCfz3yfKWtxhKGKAOu2sUE17MrHdmOmQ8Kc9R5AHiElStgJQnLkLLK0L/HVSwHIp7P9pI0RaeVafNh0l/Y+govRh+ZpHcqlfOL1rHcEc+CTVx2aB1WSp68UnQNR1MEVCP+aFoqpxpPSsokuDL/XUCFZbidfv6QB2BHRvWICx4jRNswO2iEG6qpRl+ox9Qqx0jy/Zp5R3T4io6M8EV7tNlELs5RiZ/vz1JFOnD2Cy3i3PHu0tqnwmcW3aR4qGp3e8GCqm+WzG/HQNw8L5uj+oiV0qICfkPtM+N5YvMnWCamTWZUo7JY6/9nOVFN97zISwyxFyB0/Fs67EuOU7CjW4WH02Meg7P/FucjrYjj1nNPn0ZQI20AvvhSqOVGjJdnkQsSOFOf4Xl9h8SRjZOdKyAo7hbBv/EPjVLiYEvstxTIXvrJtXtjHQvpXZAahJ/KEcWoxAmz+Fos89bXyZYlv9QOX3Rk31MTNx1e9myYJ6rMJqALpgMend+in7mcBBKdP8HK3aPvP7pyeX9pmHqgqznGsQya7OksVtc1Wh/2E2ZfkTQNDYzy4Gqp5b3mnrPzJKc7FREA7byhhaxtXJ5ho2VYtms60gxkNGONt5xJLAwuWsGHDiZlWG3gOA5DEjX4/uw8dksx/z1T7ly1/WsPSvUBeDJePM7Eq8LFYyGvPoCHX37NqX9sAinD7RXs+rzk9FA7hR5JyYzA4NHyNw58gu4yajvFeF6Zj8mq06dySURoZqkx4aWSJ5+9CTH0vkRa8ufqy0jjNE/illfH2I7PXsgomYo5UeAIgA6KF5vRvCSM2Qi2V9g7cvN4ss+4EM0sWDu1C7k09bLbxricGwT+CzIS15G8XYQJgUg4mDTp3NzvshbDuj7PVDkA/EuD26/IWeJhY24nKTut+UsKZhyDWA3rnsJZ9/xh8+vS6Qo5qZyj3hfWcV3KujEeJCVFdo/3UM6oy54jWkJqzJFC3SO1tbDF0RXLM/cbNRlcFaprTFcLPB7b1zGDZqLAq64ABV9oIT8+3VwlerzC+WIXzWwwM8xujB3367Ja4TGr977ZbfBZ5XeFWh+iITJKMGsk9ZUlb375ShwlsLSmk3Dma0eS2RmpSTqRW1SBVDgKPi52P9uW5nNypaMi84Ik7nYz7FxBjzTwSLxP+XDBL1OC67NDd7QpHuGm2A1xfX9eEK8C5RoB4wCdTSUiYiHlFKUKEsDaAtOTk5K/////0r/////SwB0lGJNcAKFlGgVdJRSlIwDcG9zlE1wAnWMCWhhc19nYXVzc5RLAIwFZ2F1c3OURwAAAAAAAAAAdWJ1Yi4=",
55
  "dtype": "float32",
56
  "_shape": [
57
  8
@@ -66,17 +67,17 @@
66
  "num_timesteps": 1001472,
67
  "_total_timesteps": 1000000,
68
  "_num_timesteps_at_start": 0,
69
- "seed": 0,
70
  "action_noise": null,
71
- "start_time": 1658839813.3867843,
72
  "learning_rate": {
73
  ":type:": "<class 'function'>",
74
- ":serialized:": "gAWVhQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjFUvaG9tZS9tYXhpbWlsaWFuLy5sb2NhbC9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgNdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPyeKHIiFV/6FlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
75
  },
76
- "tensorboard_log": "runs/seals/Ant-v0__ppo__6__1658839810/seals-Ant-v0",
77
  "lr_schedule": {
78
  ":type:": "<class 'function'>",
79
- ":serialized:": "gAWVhQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjFUvaG9tZS9tYXhpbWlsaWFuLy5sb2NhbC9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgNdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPyeKHIiFV/6FlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
80
  },
81
  "_last_obs": null,
82
  "_last_episode_starts": {
@@ -93,7 +94,7 @@
93
  "_current_progress_remaining": -0.0014719999999999178,
94
  "ep_info_buffer": {
95
  ":type:": "<class 'collections.deque'>",
96
- ":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIcEBLV1wBsECUhpRSlIwBbJRN6AOMAXSUR0CyMfwLeANHdX2UKGgGaAloD0MI0/VE141gsECUhpRSlGgVTegDaBZHQLIzyV8Ti851fZQoaAZoCWgPQwjj+nd9Uh6wQJSGlFKUaBVN6ANoFkdAsjtWNQ0oB3V9lChoBmgJaA9DCBDNPLnO9K5AlIaUUpRoFU3oA2gWR0CyPSgFs54odX2UKGgGaAloD0MIf93pzg+YsECUhpRSlGgVTegDaBZHQLJEtzVc2R91fZQoaAZoCWgPQwif46PFuU6qQJSGlFKUaBVN6ANoFkdAskaKVt4zJ3V9lChoBmgJaA9DCNIA3gIBAq5AlIaUUpRoFU3oA2gWR0CyTdqya/h3dX2UKGgGaAloD0MIhZm2fyXAoUCUhpRSlGgVTegDaBZHQLJPq24NI9V1fZQoaAZoCWgPQwgsYthhWEmwQJSGlFKUaBVN6ANoFkdAslcOtITXa3V9lChoBmgJaA9DCBQH0O9TtbBAlIaUUpRoFU3oA2gWR0CyWN8b70nPdX2UKGgGaAloD0MI5WIMrKcxsECUhpRSlGgVTegDaBZHQLJgivYe1a51fZQoaAZoCWgPQwhrKSDtc+ewQJSGlFKUaBVN6ANoFkdAsmJiDAaegHV9lChoBmgJaA9DCF4T0hoLQLBAlIaUUpRoFU3oA2gWR0CyaeHVkMCtdX2UKGgGaAloD0MIGhU42eZVqkCUhpRSlGgVTegDaBZHQLJrt8FY+0R1fZQoaAZoCWgPQwhLkXwl1PCwQJSGlFKUaBVN6ANoFkdAsnJn7di2D3V9lChoBmgJaA9DCEypS8ZRda9AlIaUUpRoFU3oA2gWR0CydCMQZn+RdX2UKGgGaAloD0MILxaGyKnolUCUhpRSlGgVTegDaBZHQLJ7o4mkWRB1fZQoaAZoCWgPQwim0eRi3FmSQJSGlFKUaBVN6ANoFkdAsn2GwC8vmHV9lChoBmgJaA9DCBiYFYpYQLBAlIaUUpRoFU3oA2gWR0CyhO8AmzBzdX2UKGgGaAloD0MILev+sSgdr0CUhpRSlGgVTegDaBZHQLKGw3XI2fl1fZQoaAZoCWgPQwgCYadYRSewQJSGlFKUaBVN6ANoFkdAso5k1UEPlXV9lChoBmgJaA9DCN3pzhP/wa9AlIaUUpRoFU3oA2gWR0CykDavA44qdX2UKGgGaAloD0MI9WVppzoxsECUhpRSlGgVTegDaBZHQLKX1s5n14B1fZQoaAZoCWgPQwiUwOYclF+jQJSGlFKUaBVN6ANoFkdAspmzOX3QD3V9lChoBmgJaA9DCJ2AJsIOxa5AlIaUUpRoFU3oA2gWR0CyqWiqABkqdX2UKGgGaAloD0MIYK5FC8Bqr0CUhpRSlGgVTegDaBZHQLKrP/etSyd1fZQoaAZoCWgPQwhxytx8w72CQJSGlFKUaBVN6ANoFkdAsrLvKMefZnV9lChoBmgJaA9DCFGjkGTOjqVAlIaUUpRoFU3oA2gWR0CytNa7ROUMdX2UKGgGaAloD0MI9IsS9O8BpkCUhpRSlGgVTegDaBZHQLK8j8jzI3l1fZQoaAZoCWgPQwjmV3OAUEyUQJSGlFKUaBVN6ANoFkdAsr57N4Z/C3V9lChoBmgJaA9DCJpEveDT9K9AlIaUUpRoFU3oA2gWR0CyxiGaH9FXdX2UKGgGaAloD0MIrp6T3se1sECUhpRSlGgVTegDaBZHQLLH/HSWqtJ1fZQoaAZoCWgPQwjFrBdDDV+wQJSGlFKUaBVN6ANoFkdAss+V8D0UXnV9lChoBmgJaA9DCCl4CrkC+bBAlIaUUpRoFU3oA2gWR0Cy0WYzN2TxdX2UKGgGaAloD0MIkQ4PYQxHlECUhpRSlGgVTegDaBZHQLLZOwGnn+11fZQoaAZoCWgPQwhLrfcb7ZmhQJSGlFKUaBVN6ANoFkdAstsl1gYxcnV9lChoBmgJaA9DCALTad3yNrBAlIaUUpRoFU3oA2gWR0Cy4poOhCdCdX2UKGgGaAloD0MIniYz3hrFsECUhpRSlGgVTegDaBZHQLLkcBsANod1fZQoaAZoCWgPQwgJGcizF4mwQJSGlFKUaBVN6ANoFkdAsuZJzzVc2XV9lChoBmgJaA9DCPg1kgRlc7BAlIaUUpRoFU3oA2gWR0Cy7eiuIRAbdX2UKGgGaAloD0MI4J18epgmsECUhpRSlGgVTegDaBZHQLLvu/2Cdz51fZQoaAZoCWgPQwgoRwGi4Mh5QJSGlFKUaBVN6ANoFkdAsveWN1hb4nV9lChoBmgJaA9DCEdxjjoKobBAlIaUUpRoFU3oA2gWR0Cy+XX6Q/5ddX2UKGgGaAloD0MIbt44KbhusECUhpRSlGgVTegDaBZHQLMBHX2/SIB1fZQoaAZoCWgPQwgP1v85QDaxQJSGlFKUaBVN6ANoFkdAswLoRe1KG3V9lChoBmgJaA9DCCGTjJyVrbFAlIaUUpRoFU3oA2gWR0CzCn+qioKldX2UKGgGaAloD0MIcT0K16PTd0CUhpRSlGgVTegDaBZHQLMMdxzq8lJ1fZQoaAZoCWgPQwj6DKg3F3GwQJSGlFKUaBVN6ANoFkdAsxPy8XenAXV9lChoBmgJaA9DCC52+6zaHq9AlIaUUpRoFU3oA2gWR0CzFcfkmx+sdX2UKGgGaAloD0MIRwVOtqFMsUCUhpRSlGgVTegDaBZHQLMlTyBkI5Z1fZQoaAZoCWgPQwjNkgA1LWqxQJSGlFKUaBVN6ANoFkdAsyclv/BFeHV9lChoBmgJaA9DCMRDGD9lm6dAlIaUUpRoFU3oA2gWR0CzLrEd3jdYdX2UKGgGaAloD0MIa0dxjoKjr0CUhpRSlGgVTegDaBZHQLMwh+7UXpJ1fZQoaAZoCWgPQwh4DmWolouwQJSGlFKUaBVN6ANoFkdAszgqKNyYHHV9lChoBmgJaA9DCFa3ek4KhbBAlIaUUpRoFU3oA2gWR0CzOfiwnpjddX2UKGgGaAloD0MI4xx1dCyHr0CUhpRSlGgVTegDaBZHQLNBopVS4vx1fZQoaAZoCWgPQwiYaftXLtuwQJSGlFKUaBVN6ANoFkdAs0NzmJWNm3V9lChoBmgJaA9DCCjwTj69EWhAlIaUUpRoFU3oA2gWR0CzSyM5n13/dX2UKGgGaAloD0MIZyjueDvjpECUhpRSlGgVTegDaBZHQLNNBS/TLGJ1fZQoaAZoCWgPQwj6Dn7ikH6YQJSGlFKUaBVN6ANoFkdAs1S7WiDdxnV9lChoBmgJaA9DCE4MycnIbbBAlIaUUpRoFU3oA2gWR0CzVom51/2CdX2UKGgGaAloD0MIZmoSvHVmsUCUhpRSlGgVTegDaBZHQLNeN3juKGd1fZQoaAZoCWgPQwiscTYdAUywQJSGlFKUaBVN6ANoFkdAs2AN2fTTfHV9lChoBmgJaA9DCGzu6H/JYKxAlIaUUpRoFU3oA2gWR0CzZ8J2ZApsdX2UKGgGaAloD0MIb7iP3HaOsUCUhpRSlGgVTegDaBZHQLNpnuBczIp1fZQoaAZoCWgPQwhuaMpON/mwQJSGlFKUaBVN6ANoFkdAs3Eu2x6fJ3V9lChoBmgJaA9DCJyHE5hWKLBAlIaUUpRoFU3oA2gWR0Czcw35vcagdX2UKGgGaAloD0MI5DCYv/K1r0CUhpRSlGgVTegDaBZHQLN6nq0+kgx1fZQoaAZoCWgPQwgMWkjA5HWxQJSGlFKUaBVN6ANoFkdAs3x3h2nsLXV9lChoBmgJaA9DCLlwICSfb7BAlIaUUpRoFU3oA2gWR0CzhB1ZowmFdX2UKGgGaAloD0MIhEcbR9zamkCUhpRSlGgVTegDaBZHQLOGBUDMeOp1fZQoaAZoCWgPQwi0AdiA+GivQJSGlFKUaBVN6ANoFkdAs427G7z06HV9lChoBmgJaA9DCMQkXMgzba9AlIaUUpRoFU3oA2gWR0Czj5PigkC4dX2UKGgGaAloD0MIC9XNxRNvsUCUhpRSlGgVTegDaBZHQLOXY3iJfpl1fZQoaAZoCWgPQwiEmiFVBCiwQJSGlFKUaBVN6ANoFkdAs6FeVNYbKnV9lChoBmgJaA9DCKclVkZTgpxAlIaUUpRoFU3oA2gWR0CzqQzX8O0+dX2UKGgGaAloD0MIPITx0whgpkCUhpRSlGgVTegDaBZHQLOq9BfKISF1fZQoaAZoCWgPQwjyQ6UR80NyQJSGlFKUaBVN6ANoFkdAs7LL0PH1e3V9lChoBmgJaA9DCO5D3nLFFrFAlIaUUpRoFU3oA2gWR0CztKcCgbqAdX2UKGgGaAloD0MIQdMSKw86sECUhpRSlGgVTegDaBZHQLO8SjmCAc11fZQoaAZoCWgPQwjwTGiSSFiQQJSGlFKUaBVN6ANoFkdAs740pe/pMnV9lChoBmgJaA9DCGjnNAtQG7BAlIaUUpRoFU3oA2gWR0CzwAn003wTdX2UKGgGaAloD0MIEf+wpYdOd0CUhpRSlGgVTegDaBZHQLPH2SiM5wR1fZQoaAZoCWgPQwiQFJFhVXyvQJSGlFKUaBVN6ANoFkdAs8mpNxlxwXV9lChoBmgJaA9DCAqi7gPwQKJAlIaUUpRoFU3oA2gWR0Cz0UXj6vaDdX2UKGgGaAloD0MINdHno/QQskCUhpRSlGgVTegDaBZHQLPTDM85jpd1fZQoaAZoCWgPQwih2AqamiGwQJSGlFKUaBVN6ANoFkdAs9qu+bmU4nV9lChoBmgJaA9DCJhuEoPESLFAlIaUUpRoFU3oA2gWR0Cz3IqbONYKdX2UKGgGaAloD0MIY7SOqjZqlkCUhpRSlGgVTegDaBZHQLPkQbUgB911fZQoaAZoCWgPQwixTSoaKwF/QJSGlFKUaBVN6ANoFkdAs+ZH4FiazHV9lChoBmgJaA9DCIV80LONmLFAlIaUUpRoFU3oA2gWR0Cz7fMqe9SNdX2UKGgGaAloD0MItRfRduS8r0CUhpRSlGgVTegDaBZHQLPvzay8jA11fZQoaAZoCWgPQwgyPWGJ/12wQJSGlFKUaBVN6ANoFkdAs/dcDp1RtXV9lChoBmgJaA9DCMB7R43J25lAlIaUUpRoFU3oA2gWR0Cz+UArH2h7dX2UKGgGaAloD0MI71cBvnOcsECUhpRSlGgVTegDaBZHQLQA2Q2dd3V1fZQoaAZoCWgPQwgVqpuLC06xQJSGlFKUaBVN6ANoFkdAtAKyngpBonV9lChoBmgJaA9DCOgTeZLsp7BAlIaUUpRoFU3oA2gWR0C0CjiI1tO3dX2UKGgGaAloD0MIem6hKzFMjkCUhpRSlGgVTegDaBZHQLQMKgf2bod1fZQoaAZoCWgPQwgCZylZhrCwQJSGlFKUaBVN6ANoFkdAtBO0aisXBXV9lChoBmgJaA9DCFzMzw1NEm9AlIaUUpRoFU3oA2gWR0C0HZTyOJcgdWUu"
97
  },
98
  "ep_success_buffer": {
99
  ":type:": "<class 'collections.deque'>",
@@ -110,7 +111,7 @@
110
  "n_epochs": 10,
111
  "clip_range": {
112
  ":type:": "<class 'function'>",
113
- ":serialized:": "gAWVhQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjFUvaG9tZS9tYXhpbWlsaWFuLy5sb2NhbC9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgNdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP9MzMzMzMzOFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
114
  },
115
  "clip_range_vf": null,
116
  "normalize_advantage": true,
 
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f3eaaac4700>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3eaaac4790>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f3eaaac4820>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3eaaac48b0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f3eaaac4940>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f3eaaac49d0>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3eaaac4a60>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f3eaaac4af0>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3eaaac4b80>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3eaaac4c10>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3eaaac4ca0>",
18
  "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f3eaaabcbd0>"
20
  },
21
  "verbose": 1,
22
  "policy_kwargs": {
23
  ":type:": "<class 'dict'>",
24
+ ":serialized:": "gAWVvAAAAAAAAAB9lCiMDWFjdGl2YXRpb25fZm6UjBt0b3JjaC5ubi5tb2R1bGVzLmFjdGl2YXRpb26UjARUYW5olJOUjAhuZXRfYXJjaJRdlH2UKIwCcGmUXZQoS0BLQGWMAnZmlF2UKEtAS0BldWGMGGZlYXR1cmVzX2V4dHJhY3Rvcl9jbGFzc5SMF2ltaXRhdGlvbi5wb2xpY2llcy5iYXNllIwaTm9ybWFsaXplRmVhdHVyZXNFeHRyYWN0b3KUk5R1Lg==",
25
  "activation_fn": "<class 'torch.nn.modules.activation.Tanh'>",
26
  "net_arch": [
27
  {
 
34
  64
35
  ]
36
  }
37
+ ],
38
+ "features_extractor_class": "<class 'imitation.policies.base.NormalizeFeaturesExtractor'>"
39
  },
40
  "observation_space": {
41
  ":type:": "<class 'gym.spaces.box.Box'>",
 
52
  },
53
  "action_space": {
54
  ":type:": "<class 'gym.spaces.box.Box'>",
55
+ ":serialized:": "gAWVJwwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaDCMBXN0YXRllH2UKIwDa2V5lGgSKJbACQAAAAAAAAAAAIBK7R7AIsvTaq+KunK72PbrNpWbJk5dMaze2qZyYJds7dUMLBbk8vxL8lfpsFSmL/2RsLz+SA1zau1SMoq3rKWEIVJzbmz10JLR6zK73XdXxM6LwTJ68DYyEuvJkhh7a4Zo4a/aH9AK0DNfjwkDdM2ZNPYFHYFblY7pxngyGgsltb0xP/3s5MEsQtxWTV9NxyFvMzBQR11bMZinfqoTfIH3ewuFviffznoe0euUc4XJk+gmhF5Pd7DYM5U5FvoC8Wkm6J/u8M6JIJbY2uB29+v838VNht78zZmgvcU7C40QwBhHAZaSvc8TMUboAOFvBNjem738hmhBBBLyp1GMzaJpnBRrVPww7Fp5Zbz+BaNzrKOZ4J4+nsp430ZvidtFLsgoyQ+ZxaeNdo9ysa3/6QS74eOM8zgvIykElxMi1CG+0TPFYOnVXD43SG/lTh3dls5oeXre88yxtGR0cDLvRpjq6q4jUZ8IiOacfSts04EUg6Bm19UgrDw5Q287mNyR0fhQDCUPFRJO0LL9UEQUyYpfR57SRPPoSwzHbj+bCcT/qF5HpaXhvsb0taJdE1GZPxzAegC9pLet8QJvD6UvXvMLdYUYhBA0ZEFMceSCtZuhBXjtiJkXqa6EdTecv95gtFdBRJoEJhgnGuU32Agd6AVAg0OoSogzGscq0yKorPN+nENr15YXlMz896i1Jc4bqNIAdc9cuMWbMYAPMTHJtagiwF/Gyh1Ec6+La+nUWPWTVrYJBenw7+Z+3IJKaS/ZFwwJjaGMoR+dbsYtKqKYh0EfLNn0ZejSHPuOT1USE3+lIWwDTGUbJd4/KSCtXY/3rluPmbNuVEurm7ynueuGYWOjG5iUYxLsiP8C63yIjPQvUV5Sv2cKEZJ4+OEYj6GJmSxynuyoB6b/8YQ4hbqxBCnjX4qaILgqXpqc81xks1dc/PIsTH9iBuyVgO+3rBTbJXoaaa31DgZRZB+FBERmMBhCSNmAecJJ13ldgaRqt0qHfNmk7nCD5hRQ8M8ca/BbSywOXNM+cQK13n4zDWygLUMMBQcioAMWSCOQDBxPkcq+/MD+M67HLnEC4gUf/prfbimg0oVzZf5cPMpFp324qhQzDOIsDwNc+Vk6FJmsgHK/A1UIe5cwIiIKRCmErd+bjm2H+Tum2MLRUwUd5myHE375TRryyRd+NclkQ2Vhz+4gjwyN0I4ENk3SVR1kLUuyMBgLM+FsHnxcIUFZcVaZp3U2gfnfyKL4Tc2qb5VT6nD05S/kMrzHIKNUVJXGPH0FEeP60qGtnWhGdigibCcpLuxw3plnAnGyX9h1aU4zckoViH2FZ9YWjKSTVaHxcgLvGJE0b0LeZmx5DcgRrId93duMjLlkM49Wae7LKz1V0mOgRyzBGRGShexkilsIihYuY+Eah9jf5XdlxIs5VHGeIx722z+jRPnz0Y7Ydfq4Z9qKgyziHh1Nv2lA1j8wRuTsyZZ+iNVp+YRd8Fw7bzkjE7fqBbsQkDssxcutLh0bXmxskAwXv3YcxIx2Qj5/ajcUIs3ReWd2yP5ozLGPmsMWP+n1ZSIQd7QyxzBwKAUVxOMy9RVfb7kx901wn0Nl4KEs9GJjfuZCcTHnU9SSb6IE3ZjBnLs6j99vhcIjJyWhMbVNXyYARrlwopWyz85Qw+KxYUeyALp/BrPjUvO7Qe4N/OHr/JP6zRVkBDBtyC/UcYrecBsY9kvaffZzMWySRhdnM/r017ija6G6935dW6UbOb780Gp6IzXeHKKAm3z+W7Zs+feZpi+KN6g6LbzspvKkoEVAnaVaeXXl9Xrwjbm/bo5I/r1gOKmIm7oxLadLHt75gz4jBXqM7A1F+/ECmEaNGYmhQdq8pdNAsm6swD1fumMcQjNnvIUteERwwAYZYDzhEDRStTR5B1YvumB8AZYt/vZbV1mXGWUjaBIlQfyufXXs0jhCwxkXnGR6MpVMVIiBJ1lEwDXA7FXMiBb9SD55xmzaihgAy6Evs8wsm64Y3SNj23s7T0cnPvoTNewLx3qHvFBzX6GBdgHkd6yWCf2Io49S85+FK2USDC1Arh+G4rc8BrFrVsXEzk2N93pfl2Qj0CyPahhovsGysoYpjJiwkvqmgBwV0t982+RB2bE0EWu54GO8CvIcXTelgYg8kapS2I0/pTmZHq9g3YR6Bdj2nwDiDHP3IPaDVe2GKko/yoO+PPg+k9lXmpV3knNb806Vo8583qg9ko/qwE3RC/c0XGTSJ49Xqxiz4AtNMv85HuUJ2SsCmBoJFRonCgDpqluLJOTuWNOZLE6MXAQPRxxMoBIs+4jK+lifDCZIaHX9Xg2ec0JmJtviz89TU3hC/39K/XtANyOpB+pZuezczRGB3f+MPFijuIDINroOY9t6nLSZurok4ml055Q4FmBC+EC3jCObe2ZA0L1Uovcmq3xzo3GfAroEDKU0F0sT+fDEpZKPKL1lnl0qodPxakAhBCSCOXnZ/1SfJOddwgMZfK1WyH+cwMVPiN1iBJvGSs9E1XewsIIXynfRGWlaOGeEQClUWW8oo33wo7zwo6LklIVu+VQ9qz9GolgtuugFTZMgFgEB3GRolOBxcTK+FePc96omX3c4jkzugUfAFYTuqB0+E5taOtHD0YNNbN7INiMExjFHiGLAl7dfqvMZLAmJbXpolYR2QyjtllmT32kRnK+UuP1nHK6cb+nMpsolL9EykXslNBqAheTQtvmErK5dvnhX3sQufWSKtNI1ZYD5wBu9Jp0upAXRYL9IRohjCt9EFNENoe6YhEEQZDThbeaHODf/dVIAcUchiJFfOdbKOnl6XJqJH7wSoWCasLGuczM9eawWWpQ9Z5O5ya7sdQmLqzArQugbLzv4Q/ZQ2regySwZYa8zJk8dx2/umeToBTKHjF6NpsLLtExMT/CNmSrtJTlE2qSgE92p8jWRfstu8C/uWloWGfeVuclQPATwdA0leeMYwLShPh13faxZb3fTdjlkCQd27F680os8/jzzwpVQV8CGADpGVlu8L18djg2jUmbhGiqt8tc7OaE2x+EuyqNrJTaK2F6VL6QuexmRNP/B5MuTj+nxU1dX46k041m2FjNznn1Krza2uM2A9SZc/A78XTVeK4+FwGcRCNI5CibBYSKA3rhGm6nlxl1sa8fAU9xu2tM/TIWOuIe/brHHlav0o2kaZh4/La6bNoxQLJffRZx+kIynlf8AjzD93339E89zQX5GU05W8ZnY2zUjhl1QCmTc6JYRMeqKGU2HRTJKqFwEh7Atz0ssX9II9E5cgDaTSMt8UUGThguIT3nbDs6lyfeb8XxWj6XuIKb/HpRoB4wCdTSUiYiHlFKUKEsDaAtOTk5K/////0r/////SwB0lGJNcAKFlGgVdJRSlIwDcG9zlE1wAnWMCWhhc19nYXVzc5RLAIwFZ2F1c3OURwAAAAAAAAAAdWJ1Yi4=",
56
  "dtype": "float32",
57
  "_shape": [
58
  8
 
67
  "num_timesteps": 1001472,
68
  "_total_timesteps": 1000000,
69
  "_num_timesteps_at_start": 0,
70
+ "seed": 6,
71
  "action_noise": null,
72
+ "start_time": 1670518056075171587,
73
  "learning_rate": {
74
  ":type:": "<class 'function'>",
75
+ ":serialized:": "gAWVhQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMUy9ob21lL21heGltaWxpYW4vdmVudi9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgMdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoHn2UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPyeKHIiFV/6FlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
76
  },
77
+ "tensorboard_log": "runs/seals/Ant-v0__ppo__6__1670517965/seals-Ant-v0",
78
  "lr_schedule": {
79
  ":type:": "<class 'function'>",
80
+ ":serialized:": "gAWVhQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMUy9ob21lL21heGltaWxpYW4vdmVudi9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgMdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoHn2UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPyeKHIiFV/6FlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
81
  },
82
  "_last_obs": null,
83
  "_last_episode_starts": {
 
94
  "_current_progress_remaining": -0.0014719999999999178,
95
  "ep_info_buffer": {
96
  ":type:": "<class 'collections.deque'>",
97
+ ":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI7j8yHfJ8rECUhpRSlIwBbJRN6AOMAXSUR0CzKES4SYgJdX2UKGgGaAloD0MIUMjO21iqqECUhpRSlGgVTegDaBZHQLMp3G9Htnh1fZQoaAZoCWgPQwg4hgDgIJuqQJSGlFKUaBVN6ANoFkdAszE06QvHtHV9lChoBmgJaA9DCLXDX5OtTaxAlIaUUpRoFU3oA2gWR0CzMtm5MDfWdX2UKGgGaAloD0MIm3XG941arECUhpRSlGgVTegDaBZHQLM6K6kIomZ1fZQoaAZoCWgPQwi37uap/vOqQJSGlFKUaBVN6ANoFkdAszvOD/VAiXV9lChoBmgJaA9DCL6+1qVGdKtAlIaUUpRoFU3oA2gWR0CzQv6+8Gs4dX2UKGgGaAloD0MIBK4rZnzkqkCUhpRSlGgVTegDaBZHQLNEnddVvMt1fZQoaAZoCWgPQwip2m6Cj6WiQJSGlFKUaBVN6ANoFkdAs0v5Pci4a3V9lChoBmgJaA9DCKIpO/1oeKxAlIaUUpRoFU3oA2gWR0CzTZTVH4GmdX2UKGgGaAloD0MIpztPPFfVqkCUhpRSlGgVTegDaBZHQLNVONvwVj91fZQoaAZoCWgPQwgFMdC1BzuuQJSGlFKUaBVN6ANoFkdAs1be1YyO73V9lChoBmgJaA9DCHC1TlwWEqxAlIaUUpRoFU3oA2gWR0CzXlNliBoVdX2UKGgGaAloD0MI/aAuUjg/rkCUhpRSlGgVTegDaBZHQLNgPukDZDl1fZQoaAZoCWgPQwjXZ876LGOsQJSGlFKUaBVN6ANoFkdAs2fXtBv733V9lChoBmgJaA9DCE1nJ4OLoatAlIaUUpRoFU3oA2gWR0CzaX9T1kDqdX2UKGgGaAloD0MIh4px/sYWrUCUhpRSlGgVTegDaBZHQLNxAslLOA11fZQoaAZoCWgPQwjR6Xk37hOuQJSGlFKUaBVN6ANoFkdAs3KawOe8PHV9lChoBmgJaA9DCAGFevqIpaRAlIaUUpRoFU3oA2gWR0Czei5e7cwhdX2UKGgGaAloD0MIsfhNYeVYikCUhpRSlGgVTegDaBZHQLN8FcaOxSp1fZQoaAZoCWgPQwgqOSf20MysQJSGlFKUaBVN6ANoFkdAs4N0DbJwKnV9lChoBmgJaA9DCMVztoDgz6pAlIaUUpRoFU3oA2gWR0CzhRLNKRMfdX2UKGgGaAloD0MI0oxF05lFo0CUhpRSlGgVTegDaBZHQLOMjkzXSSh1fZQoaAZoCWgPQwguVP61tOSrQJSGlFKUaBVN6ANoFkdAs44wGIKtxXV9lChoBmgJaA9DCCvbh7wtSKtAlIaUUpRoFU3oA2gWR0CznHDXWe6JdX2UKGgGaAloD0MIsmX5uuxMq0CUhpRSlGgVTegDaBZHQLOeF2GIsRR1fZQoaAZoCWgPQwj7IMuCYYWnQJSGlFKUaBVN6ANoFkdAs6WPlp48l3V9lChoBmgJaA9DCKzEPCtZMqdAlIaUUpRoFU3oA2gWR0CzpzNOEdvLdX2UKGgGaAloD0MIGapiKj3nqkCUhpRSlGgVTegDaBZHQLOulJvYODt1fZQoaAZoCWgPQwghzsMJpD6hQJSGlFKUaBVN6ANoFkdAs7Af4L1EmnV9lChoBmgJaA9DCIwTX+0Ym6tAlIaUUpRoFU3oA2gWR0Czt3dj5KvndX2UKGgGaAloD0MIrroO1cyUrECUhpRSlGgVTegDaBZHQLO5DqbBoEl1fZQoaAZoCWgPQwjEBaBRuq+WQJSGlFKUaBVN6ANoFkdAs8CKreZXuHV9lChoBmgJaA9DCN/EkJwEsa1AlIaUUpRoFU3oA2gWR0CzwiS+HrQgdX2UKGgGaAloD0MIz4WRXqSLnkCUhpRSlGgVTegDaBZHQLPJpXV9Wp91fZQoaAZoCWgPQwjrxrsjA7arQJSGlFKUaBVN6ANoFkdAs8sxfgJkXnV9lChoBmgJaA9DCLzqAfOA7KtAlIaUUpRoFU3oA2gWR0Cz0rsKLKmsdX2UKGgGaAloD0MIQfUPIsErq0CUhpRSlGgVTegDaBZHQLPUSTefqX51fZQoaAZoCWgPQwhWZd8VeROrQJSGlFKUaBVN6ANoFkdAs9X/8YQ8OnV9lChoBmgJaA9DCLlt36OOsaxAlIaUUpRoFU3oA2gWR0Cz3VJgG8mKdX2UKGgGaAloD0MIO6sF9uj3q0CUhpRSlGgVTegDaBZHQLPe9RsMy8B1fZQoaAZoCWgPQwic/Bad3ImXQJSGlFKUaBVN6ANoFkdAs+ZhaSs8xXV9lChoBmgJaA9DCLX7VYAveKtAlIaUUpRoFU3oA2gWR0Cz5/PhAGB4dX2UKGgGaAloD0MIc4QM5On0qkCUhpRSlGgVTegDaBZHQLPvS9QGfPJ1fZQoaAZoCWgPQwj8brplB7Z+QJSGlFKUaBVN6ANoFkdAs/EklqrR0HV9lChoBmgJaA9DCJxqLcwK6aVAlIaUUpRoFU3oA2gWR0Cz+L/HcUM5dX2UKGgGaAloD0MIjbgANEJjpkCUhpRSlGgVTegDaBZHQLP6ZwX668R1fZQoaAZoCWgPQwioUx7d8KCrQJSGlFKUaBVN6ANoFkdAtAG2zPa+OHV9lChoBmgJaA9DCFU01v4erqlAlIaUUpRoFU3oA2gWR0C0A0BW5paidX2UKGgGaAloD0MIcvp6vkb4q0CUhpRSlGgVTegDaBZHQLQRkgDifg91fZQoaAZoCWgPQwiL4lXWDhqqQJSGlFKUaBVN6ANoFkdAtBMpdiUgS3V9lChoBmgJaA9DCJilnZpjh6tAlIaUUpRoFU3oA2gWR0C0GpKlUIcBdX2UKGgGaAloD0MIP3PWp3TiqUCUhpRSlGgVTegDaBZHQLQcKSgoPTZ1fZQoaAZoCWgPQwjik04k8OqoQJSGlFKUaBVN6ANoFkdAtCN9V4oqkXV9lChoBmgJaA9DCDpY/+fI7qxAlIaUUpRoFU3oA2gWR0C0JRMBhhH9dX2UKGgGaAloD0MI2scKfvt8nkCUhpRSlGgVTegDaBZHQLQsaK3/gix1fZQoaAZoCWgPQwgsD9JTPKSkQJSGlFKUaBVN6ANoFkdAtC4Fd/rjYXV9lChoBmgJaA9DCE/KpIY28oBAlIaUUpRoFU3oA2gWR0C0NWcfA9FGdX2UKGgGaAloD0MIy7+WV5ZmqkCUhpRSlGgVTegDaBZHQLQ3A0th/iJ1fZQoaAZoCWgPQwiowwq3HB6tQJSGlFKUaBVN6ANoFkdAtD5J5v99+nV9lChoBmgJaA9DCBNkBFS4O4dAlIaUUpRoFU3oA2gWR0C0QAqQzUI+dX2UKGgGaAloD0MIQzf7A7VupECUhpRSlGgVTegDaBZHQLRHXUBnzxx1fZQoaAZoCWgPQwgHJ6JfCx6pQJSGlFKUaBVN6ANoFkdAtEj+e05U+HV9lChoBmgJaA9DCDPFHATtmqZAlIaUUpRoFU3oA2gWR0C0UGP3rUsndX2UKGgGaAloD0MItklFY71qqkCUhpRSlGgVTegDaBZHQLRSD0Dlo111fZQoaAZoCWgPQwjsMvyny3CrQJSGlFKUaBVN6ANoFkdAtFl0gDA8CHV9lChoBmgJaA9DCGTOM/YFZqZAlIaUUpRoFU3oA2gWR0C0Wx9MsYl6dX2UKGgGaAloD0MId7rzxMvBqkCUhpRSlGgVTegDaBZHQLRiqW1twaR1fZQoaAZoCWgPQwj9vRQedMCIQJSGlFKUaBVN6ANoFkdAtGRjK4hEB3V9lChoBmgJaA9DCNIdxM7k+6FAlIaUUpRoFU3oA2gWR0C0a70daMaTdX2UKGgGaAloD0MI7Zv7qwd6kkCUhpRSlGgVTegDaBZHQLRtckXUH6d1fZQoaAZoCWgPQwhpigCnhyapQJSGlFKUaBVN6ANoFkdAtHTA1ZTya3V9lChoBmgJaA9DCPJ5xVOv+ahAlIaUUpRoFU3oA2gWR0C0dmaREF4cdX2UKGgGaAloD0MIt3u5Ty6iqECUhpRSlGgVTegDaBZHQLR9v5uqFRJ1fZQoaAZoCWgPQwgDP6phz4yeQJSGlFKUaBVN6ANoFkdAtIZ6Y2Kl6HV9lChoBmgJaA9DCLTk8bSkt6NAlIaUUpRoFU3oA2gWR0C0jeaFdszmdX2UKGgGaAloD0MIGhajrj01qECUhpRSlGgVTegDaBZHQLSPj55Z8rt1fZQoaAZoCWgPQwiqYFRSR3qoQJSGlFKUaBVN6ANoFkdAtJb5X+2mYXV9lChoBmgJaA9DCFIQPL41RalAlIaUUpRoFU3oA2gWR0C0mI4ldC3PdX2UKGgGaAloD0MI7Sx6p0r1oUCUhpRSlGgVTegDaBZHQLSf8NHH3lF1fZQoaAZoCWgPQwil+WNa216pQJSGlFKUaBVN6ANoFkdAtKGQsXizcHV9lChoBmgJaA9DCMl06PR8/KtAlIaUUpRoFU3oA2gWR0C0ozeTRplCdX2UKGgGaAloD0MIFF0XfoAXp0CUhpRSlGgVTegDaBZHQLSqc1dxAB11fZQoaAZoCWgPQwgv4GWGPSinQJSGlFKUaBVN6ANoFkdAtKwYmWt2cXV9lChoBmgJaA9DCNYbtcIURqpAlIaUUpRoFU3oA2gWR0C0s1r6UJOWdX2UKGgGaAloD0MIZ53xffFqqUCUhpRSlGgVTegDaBZHQLS08FgDzRR1fZQoaAZoCWgPQwiKWppbaXCnQJSGlFKUaBVN6ANoFkdAtLxGdPLxJHV9lChoBmgJaA9DCO2A64oRWKxAlIaUUpRoFU3oA2gWR0C0veDKDCgsdX2UKGgGaAloD0MI0SLb+XYzo0CUhpRSlGgVTegDaBZHQLTFCQUYbbV1fZQoaAZoCWgPQwh9zXLZcGCqQJSGlFKUaBVN6ANoFkdAtMahwZOzp3V9lChoBmgJaA9DCAT/W8lOmalAlIaUUpRoFU3oA2gWR0C0zchyfcvedX2UKGgGaAloD0MIpN5TOS18mkCUhpRSlGgVTegDaBZHQLTPfYRNATt1fZQoaAZoCWgPQwiimSfX/NaqQJSGlFKUaBVN6ANoFkdAtNaXFJg9eXV9lChoBmgJaA9DCA9j0t9ziqpAlIaUUpRoFU3oA2gWR0C02C+t4iX6dX2UKGgGaAloD0MIafzCK+nanUCUhpRSlGgVTegDaBZHQLTfVa8Hv+h1fZQoaAZoCWgPQwhS0sPQsnGqQJSGlFKUaBVN6ANoFkdAtODtvo/zKHV9lChoBmgJaA9DCOWdQxkqVKhAlIaUUpRoFU3oA2gWR0C06BZ8OTaCdX2UKGgGaAloD0MIvoi2Y0IiqUCUhpRSlGgVTegDaBZHQLTpsOkLx7R1fZQoaAZoCWgPQwiny2Ji25+rQJSGlFKUaBVN6ANoFkdAtPDWt2cJ+nV9lChoBmgJaA9DCAb1LXOyI6tAlIaUUpRoFU3oA2gWR0C0+RBMzuWsdWUu"
98
  },
99
  "ep_success_buffer": {
100
  ":type:": "<class 'collections.deque'>",
 
111
  "n_epochs": 10,
112
  "clip_range": {
113
  ":type:": "<class 'function'>",
114
+ ":serialized:": "gAWVhQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMUy9ob21lL21heGltaWxpYW4vdmVudi9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgMdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoHn2UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP9MzMzMzMzOFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
115
  },
116
  "clip_range_vf": null,
117
  "normalize_advantage": true,
ppo-seals-Ant-v0/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:d4062286fa170aeb523e3cd76beb967d96465400e39a2c9bd36d2e1811039745
3
- size 197808
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9f5ac25062e51075852b070bf4c27491cf48b1397933dba278a543931efd63ee
3
+ size 197872
ppo-seals-Ant-v0/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:053e527434ec86dfc7f0741adbb14d7fe73bfe9cacc27765be02d1a954e1597b
3
- size 98174
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3642052a35b9285abc3164dcdf69e7694b38d217df440b517ae3369af4800974
3
+ size 100085
ppo-seals-Ant-v0/system_info.txt CHANGED
@@ -1,6 +1,6 @@
1
- OS: Linux-5.4.0-122-generic-x86_64-with-glibc2.29 #138-Ubuntu SMP Wed Jun 22 15:00:31 UTC 2022
2
  Python: 3.8.10
3
- Stable-Baselines3: 1.6.0
4
  PyTorch: 1.11.0+cu102
5
  GPU Enabled: False
6
  Numpy: 1.22.3
 
1
+ OS: Linux-5.4.0-125-generic-x86_64-with-glibc2.29 #141-Ubuntu SMP Wed Aug 10 13:42:03 UTC 2022
2
  Python: 3.8.10
3
+ Stable-Baselines3: 1.6.2
4
  PyTorch: 1.11.0+cu102
5
  GPU Enabled: False
6
  Numpy: 1.22.3
replay.mp4 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:97417cbfcfe682d095e3990c704212f21a827211f770e3d5d796fff2b978d721
3
- size 2359655
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:335bdab2ffdcf2cebfead90745a0f9e3eada21265d248f3ea6c8f96970b9ef3c
3
+ size 1831582
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 1185.2132266, "std_reward": 557.9244792064619, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-07-27T16:58:28.557618"}
 
1
+ {"mean_reward": 3034.4950357, "std_reward": 1124.69662303982, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-29T14:29:02.930842"}
train_eval_metrics.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:e983feaa469a8aae6266b498399ba9b75253d4605d8943725b15d4dd87eeb994
3
- size 34060
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f6ef0fab686049a2bbf9661ac7176caf4cb4865b4442af59e2b30c1d0e0a3bd1
3
+ size 34017
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2adb406c0bd0bdb92ece065dd4c10c63fff163f83a781d12e93a8639204503ac
3
+ size 6872