Text Generation
Transformers
PyTorch
Korean
llama
text-generation-inference
Inference Endpoints
DopeorNope commited on
Commit
daf4ff7
·
1 Parent(s): f90b0c3

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +79 -0
README.md ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - ko
4
+ datasets:
5
+ - DopeorNope/DPO-Ko-Dataset
6
+ - DopeorNope/Orca_Near_Dedup-v2
7
+ library_name: transformers
8
+ pipeline_tag: text-generation
9
+ license: cc-by-nc-sa-4.0
10
+ ---
11
+
12
+ **(주)미디어그룹사람과숲과 (주)마커의 LLM 연구 컨소시엄에서 개발된 모델입니다**
13
+ **The license is `cc-by-nc-sa-4.0`.**
14
+
15
+ # **🐻‍❄️COKAL-DPO_13b-v2🐻‍❄️**
16
+ ![img](./COKAL-DPO_bear.png)
17
+
18
+ ## Model Details
19
+
20
+ **Model Developers** Seungyoo Lee (DopeorNope)
21
+
22
+ **Input** Models input text only.
23
+
24
+ **Output** Models generate text only.
25
+
26
+ **Model Architecture**
27
+ COKAL-DPO_test-v2 is an auto-regressive 13B language model based on the LLaMA2 transformer architecture.
28
+
29
+ **Base Model** [DopeorNope/COKAL_pre_DPO_Test_v1-13b](https://huggingface.co/DopeorNope/COKAL_pre_DPO_Test_v1-13b)
30
+
31
+ DopeorNope/COKAL_pre_DPO_Test_v2-13b is the SFT model to train with DPO methodology.
32
+
33
+ **Training Dataset**
34
+ - DPO training dataset: [DopeorNope/DPO-Ko-Dataset](private) - private
35
+
36
+ This dataset was constructed by directly collecting and reorganizing data by DopeorNope, obtaining insights from ["lvwerra/stack-exchange-paired"](https://huggingface.co/datasets/lvwerra/stack-exchange-paired) to create a paired dataset. (It means I do not use stack-exchange-paired; I just got an insight from it.)
37
+
38
+ - SFT training dataset: [DopeorNope/Orca_Near_Dedup-v2](private) - private
39
+
40
+ This dataset is based on ["kyujinpy/OpenOrca-KO"](https://huggingface.co/datasets/kyujinpy/OpenOrca-KO) and has been processed using the Near Dedup algorithm to remove items with a Jaccard Similarity threshold of 0.8 or higher. In addition, inconsistent inputs have been cleaned and modified.
41
+
42
+ **Training**
43
+ The difference between "DopeorNope/COKAL-DPO_test-v2" and this model is that this model has different hyperparameters from the one in that setting when it comes to the final version.
44
+
45
+ I developed the model in an environment with four RTX 3090 GPUs running Ubuntu 18.04.
46
+
47
+ It seems that when uploading the model directly to a repository from a Linux server, there may be an issue causing the model to appear to have more parameters. However, this model is based on a 13B architecture.
48
+
49
+
50
+ **Reference papers**
51
+
52
+ - Data Strategy:
53
+ - [LIMA(Zhou et al., 2023)](https://arxiv.org/abs/2305.11206)
54
+ - [Near Dedup algorithm(Lee et al., 2022)](https://arxiv.org/abs/2107.06499)
55
+
56
+ - Model Architecture:
57
+ - [Llama2(Touvron et al., 2023)](https://arxiv.org/abs/2307.09288)
58
+
59
+
60
+ # Implementation Code
61
+ ```python
62
+
63
+ from transformers import AutoModelForCausalLM, AutoTokenizer
64
+ import torch
65
+
66
+ repo = "HumanF-MarkrAI/COKAL-DPO-13b-v2"
67
+ model = AutoModelForCausalLM.from_pretrained(
68
+ repo,
69
+ return_dict=True,
70
+ torch_dtype=torch.float16,
71
+ device_map='auto'
72
+ )
73
+ model_tokenizer = AutoTokenizer.from_pretrained(repo)
74
+ ```
75
+
76
+
77
+
78
+
79
+ ---