{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f2cbcfcb740>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1690134768158842652, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAABJFb1oXbw/Xof+vvaDnD4/U+U7enmhvQAAAAAAAAAAzQYHveoMHT+y0g8+sT6HvigKLzz+c565AAAAAAAAAAAap6q9arYvPuJDY7zcNF2+9uQVvSZpQj0AAAAAAAAAANM6K74Ks4s/znQIv2ZnFb/I5pa+SnqrvgAAAAAAAAAApt3BPUOgY7xnsxS9i64NO+WJyj2SCua7AACAPwAAgD+znwW9HXprPuIiwT1CAGu+6NqFPCPgzL0AAAAAAAAAADPdNDwWkWk9Zn9OvcXiNL5jY1k7B6rJPAAAAAAAAAAA5h7NPQFMi7yiEoK8x04mPXw4+T0KAwG+AAAAAAAAgD+tCJo++OtqP0jFDD0FOsG+K/c0PvQ5jL0AAAAAAAAAAEaJgT4ETz6903nxuiSGwzk9UKe+UlwuOgAAgD8AAIA/Ziw3Pe8g4z5voDA83x6Evo5GOTyl1k09AAAAAAAAAACaI3g9cbNNu/ayPrzv3448eb1qPPjAdb0AAIA/AACAP8DyIb7GIaY+Wxp8PqqMhb5fsSE8fOWhPQAAAAAAAAAAphy4PcOJBroYSpI7s794NoRTNbgoqq66AACAPwAAAACa3ao9SMOHuiozLLS3f7uvUU9Nu12ZqzMAAIA/AACAPyYP+j1s/qG7gv8Xvp06BrxDoPI9zi4hvgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVNAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHByrrgOz6eMAWyUTWABjAF0lEdApCKq90zTF3V9lChoBkdAchB83uNPxmgHTTgBaAhHQKQi/R64Uex1fZQoaAZHQHIb8do371toB02rAmgIR0CkI0/7iyY5dX2UKGgGR0BxJvyYoiLVaAdNpgFoCEdApCRFQCSzPnV9lChoBkdAQMfeDWbw0GgHS9ZoCEdApCUH+AEt/XV9lChoBkdAcZihqTKT0WgHTRABaAhHQKQvF1QIldF1fZQoaAZHQFCeX8O09hZoB0v1aAhHQKQveinHead1fZQoaAZHQHC+5EYwZfloB01gAWgIR0CkL4VmapgkdX2UKGgGR0Bv+cuYhMakaAdNaAJoCEdApC+K3w1BMXV9lChoBkdATm/nKW9lE2gHS9ZoCEdApC/PjS5RTHV9lChoBkdAcRwyJ9AoomgHTWcBaAhHQKQwpDqGDcx1fZQoaAZHQHCz2OIZZSxoB02kAWgIR0CkMKTVc2R8dX2UKGgGR0Bwp0j2SMcZaAdNWQFoCEdApDDUZaV2R3V9lChoBkdAZjWwJw84gmgHTegDaAhHQKQxMCCjDbd1fZQoaAZHQHHtn974SHxoB00zAWgIR0CkMTTZpSJkdX2UKGgGR0ByrEfhddE9aAdNWwFoCEdApDGORYA80XV9lChoBkdATzJhMJx//mgHS7BoCEdApDI7dznzQXV9lChoBkdAcFjbgjyFwmgHTTYBaAhHQKQyTPfKp1l1fZQoaAZHQG6wvIGQjlhoB00SAWgIR0CkMl+40/GEdX2UKGgGR0BksCPOpsGgaAdN6ANoCEdApDPFalk6LnV9lChoBkdAR2Q371qWT2gHS8VoCEdApDPjayrxRXV9lChoBkdAQjCBVdX1amgHS9ZoCEdApDQ2EoOQQ3V9lChoBkdAcNlhfBvaUWgHTTMBaAhHQKQ09Heaa1F1fZQoaAZHQG4OT9sJpnJoB00qAWgIR0CkNQ+QU5+6dX2UKGgGR0BtDwaWHDaXaAdNFAFoCEdApDYgTufEoHV9lChoBkdAbYxx4IKMN2gHTZEBaAhHQKQ3Juogmqp1fZQoaAZHQGu2iwB5ooNoB02DAWgIR0CkOONnGsFMdX2UKGgGR0BfUkvCdjG2aAdN6ANoCEdApDmm9eyAx3V9lChoBkdAcOHtjTa0yGgHTU8BaAhHQKQ6FhHbypd1fZQoaAZHQHCRCvPkaMtoB01ZAWgIR0CkOoPOyE+QdX2UKGgGR0BshA3PzFuOaAdNHwFoCEdApDuOgHu7YnV9lChoBkdAcUumh/RVqGgHTbIBaAhHQKQ81QaaTfR1fZQoaAZHQG+CY9X9zfdoB01SAWgIR0CkPQRChN/OdX2UKGgGR0BvcyTr3TNMaAdNbgFoCEdApD0bnNgSe3V9lChoBkdARrzKmsNlRWgHS95oCEdApD06GDcuanV9lChoBkdAcN8U1hsqKGgHTToBaAhHQKQ9PyXD3uh1fZQoaAZHQHBCDDsMRYloB006AWgIR0CkPVMpw0fpdX2UKGgGR0BjuCX8fmtAaAdN6ANoCEdApD2c5U96knV9lChoBkdAccVDDTBqK2gHTRcCaAhHQKQ9oYVqN6x1fZQoaAZHQGxnfsNUfgdoB00tAWgIR0CkPd4kE9t/dX2UKGgGR0BvE2puMuOCaAdNVgJoCEdApD4qQPqcE3V9lChoBkdARTkcCHRCyGgHS8hoCEdApD44C6pYLnV9lChoBkdAcHTvNu+AVmgHTSEBaAhHQKQ/uMkyDZl1fZQoaAZHQHDXBzNliBpoB01XAWgIR0CkP8F49ovjdX2UKGgGR0BxvOThYNiIaAdNSgFoCEdApD/3AXVLBnV9lChoBkdAcW7uOS4e92gHTToBaAhHQKRAwn/DLr51fZQoaAZHQHE4m3KB/ZxoB00GAWgIR0CkQRAnlXA/dX2UKGgGR0Bve+qPwNLEaAdNdANoCEdApEFS5mRNh3V9lChoBkdATo5gXuVopWgHS8toCEdApEF4WznienV9lChoBkdAQU7BEa2nbmgHS8xoCEdApEGTCrLhaXV9lChoBkdAblMoGY8dP2gHTRUBaAhHQKRBnTYNAkd1fZQoaAZHQHBpDW5H3DhoB00xAWgIR0CkQb1WjoIOdX2UKGgGR0BxYUtoSL62aAdNCQFoCEdApEHe9Htnf3V9lChoBkdAcIzF+NLlFWgHTRkBaAhHQKRKaA8Swnp1fZQoaAZHQHD4X531SO1oB00zAWgIR0CkSn51Ng0CdX2UKGgGR0Bvr0vTPSlWaAdNRQFoCEdApEqxa9sabXV9lChoBkdAco5XbdrO7mgHTTsBaAhHQKRLJ94NZvF1fZQoaAZHQGz/u9FnZkFoB00PAWgIR0CkTGu/+Kj0dX2UKGgGR0BxFJL9MsYmaAdNJQFoCEdApE36eAd4mnV9lChoBkdAORaxgRbr1WgHS/NoCEdApE4mglF+eHV9lChoBkdAcvx+bVjI72gHTW0BaAhHQKROTAAQxvh1fZQoaAZHQGy4gPuogmtoB00pAmgIR0CkTmXGn4widX2UKGgGR0A8HlhPTG5uaAdL62gIR0CkTnBnBciXdX2UKGgGR0BxVRXLeQ+2aAdNKwFoCEdApE6wUUO/cnV9lChoBkdAcHEgrH2h7GgHTScBaAhHQKROvofSx7l1fZQoaAZHQHEnPj0cwQFoB00rAWgIR0CkTuVe0G/vdX2UKGgGR0BsqDcCYCyRaAdNSAFoCEdApE72QGOdXnV9lChoBkdAcIIksSTQmmgHTT4BaAhHQKRPOGj9GZx1fZQoaAZHQHEPE0SAYpFoB000AWgIR0CkT4QVj7Q+dX2UKGgGR0BwAK/Dcdo4aAdNGwFoCEdApFACuyNXHXV9lChoBkdAbo0ornTy8WgHTXsBaAhHQKRQbcer+5x1fZQoaAZHQHCnYyj59E1oB01TAWgIR0CkUHfUnXumdX2UKGgGR0Bx2NQP7N0OaAdNAQFoCEdApFEcUuctoXV9lChoBkdARCk8FINEw2gHS85oCEdApFIpZntfHHV9lChoBkdAQIsyP+4smWgHS8toCEdApFPJ9PUKA3V9lChoBkdAcIDylvZRK2gHTQoBaAhHQKRUF4KQaJh1fZQoaAZHQG5mnE/B3zNoB00LAWgIR0CkVHn7YTTOdX2UKGgGR0Bw+N5v99+gaAdNOQFoCEdApFSsNpdrwnV9lChoBkdAcLyLytmthmgHTSsBaAhHQKRVF2jfvWp1fZQoaAZHQHF+OMQ2/BZoB01GAWgIR0CkVUqtxMnJdX2UKGgGR0BwlUSnLq2SaAdNKgFoCEdApFVjLt/nXHV9lChoBkdAcU5zGPxQSGgHTWoBaAhHQKRVliDujRF1fZQoaAZHQHFb9wWFev9oB00WAWgIR0CkVlamwaBJdX2UKGgGR0BtR1dE9dNWaAdNFQFoCEdApFZboZAIIHV9lChoBkdAcL+6lLvkR2gHTQMBaAhHQKRXf6dlNDd1fZQoaAZHQHHvq7Ackt5oB02+AWgIR0CkV/sOG0u2dX2UKGgGR0Bx+vJ+2E00aAdN/gFoCEdApFgn8fmtAHV9lChoBkdAO+psbedkKGgHS+poCEdApFiYFHJ9zHV9lChoBkdATyOEdvKlpGgHS9BoCEdApFjB8hLXc3V9lChoBkdAcEtWom5UcWgHTR4BaAhHQKRZUz1K5Cp1fZQoaAZHQHIxJAdGRV9oB00qAWgIR0CkWVzJyQxOdX2UKGgGR0BwsJoVVPvbaAdNDwFoCEdApFlpl6JIlXV9lChoBkdAcE0DuSfUWmgHTc4BaAhHQKRaJcophF51fZQoaAZHQHIZzGgi/wloB00nAWgIR0CkWjMy8BdVdX2UKGgGR0BwdGEFnqVyaAdNQgFoCEdApFp+zjWCmXV9lChoBkdAYP3PRArxzGgHTegDaAhHQKRahtwaR6p1fZQoaAZHQHHLTMzMzM1oB01eAWgIR0CkW1SsS00FdX2UKGgGR0BySOFoL5RCaAdNLAFoCEdApFtcMd92HXV9lChoBkdAcgnAiFCb+mgHTWYBaAhHQKRcU3rD6311fZQoaAZHQHE/49X9zfdoB00yAWgIR0CkXKxkVerudWUu"}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}