mistralic-expert-16 / checkpoint-800 /trainer_state.json
pharaouk's picture
Training in progress, step 800, checkpoint
ffd76c5
raw
history blame
24.5 kB
{
"best_metric": 0.7431616187095642,
"best_model_checkpoint": "experts/mistralic-expert-16/checkpoint-600",
"epoch": 0.2534854245880862,
"eval_steps": 200,
"global_step": 800,
"is_hyper_param_search": false,
"is_local_process_zero": true,
"is_world_process_zero": true,
"log_history": [
{
"epoch": 0.0,
"learning_rate": 0.0002,
"loss": 0.7873,
"step": 10
},
{
"epoch": 0.01,
"learning_rate": 0.0002,
"loss": 0.8128,
"step": 20
},
{
"epoch": 0.01,
"learning_rate": 0.0002,
"loss": 0.8641,
"step": 30
},
{
"epoch": 0.01,
"learning_rate": 0.0002,
"loss": 0.8246,
"step": 40
},
{
"epoch": 0.02,
"learning_rate": 0.0002,
"loss": 0.7867,
"step": 50
},
{
"epoch": 0.02,
"learning_rate": 0.0002,
"loss": 0.7705,
"step": 60
},
{
"epoch": 0.02,
"learning_rate": 0.0002,
"loss": 0.7671,
"step": 70
},
{
"epoch": 0.03,
"learning_rate": 0.0002,
"loss": 0.8725,
"step": 80
},
{
"epoch": 0.03,
"learning_rate": 0.0002,
"loss": 0.8337,
"step": 90
},
{
"epoch": 0.03,
"learning_rate": 0.0002,
"loss": 0.7819,
"step": 100
},
{
"epoch": 0.03,
"learning_rate": 0.0002,
"loss": 0.7729,
"step": 110
},
{
"epoch": 0.04,
"learning_rate": 0.0002,
"loss": 0.8169,
"step": 120
},
{
"epoch": 0.04,
"learning_rate": 0.0002,
"loss": 0.7988,
"step": 130
},
{
"epoch": 0.04,
"learning_rate": 0.0002,
"loss": 0.8958,
"step": 140
},
{
"epoch": 0.05,
"learning_rate": 0.0002,
"loss": 0.7682,
"step": 150
},
{
"epoch": 0.05,
"learning_rate": 0.0002,
"loss": 0.7729,
"step": 160
},
{
"epoch": 0.05,
"learning_rate": 0.0002,
"loss": 0.7375,
"step": 170
},
{
"epoch": 0.06,
"learning_rate": 0.0002,
"loss": 0.7756,
"step": 180
},
{
"epoch": 0.06,
"learning_rate": 0.0002,
"loss": 0.8256,
"step": 190
},
{
"epoch": 0.06,
"learning_rate": 0.0002,
"loss": 0.8504,
"step": 200
},
{
"epoch": 0.06,
"eval_loss": 0.7519773244857788,
"eval_runtime": 153.135,
"eval_samples_per_second": 6.53,
"eval_steps_per_second": 3.265,
"step": 200
},
{
"epoch": 0.06,
"mmlu_eval_accuracy": 0.5986624199855438,
"mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727,
"mmlu_eval_accuracy_anatomy": 0.42857142857142855,
"mmlu_eval_accuracy_astronomy": 0.6875,
"mmlu_eval_accuracy_business_ethics": 0.6363636363636364,
"mmlu_eval_accuracy_clinical_knowledge": 0.5862068965517241,
"mmlu_eval_accuracy_college_biology": 0.5625,
"mmlu_eval_accuracy_college_chemistry": 0.375,
"mmlu_eval_accuracy_college_computer_science": 0.36363636363636365,
"mmlu_eval_accuracy_college_mathematics": 0.6363636363636364,
"mmlu_eval_accuracy_college_medicine": 0.6363636363636364,
"mmlu_eval_accuracy_college_physics": 0.45454545454545453,
"mmlu_eval_accuracy_computer_security": 0.5454545454545454,
"mmlu_eval_accuracy_conceptual_physics": 0.5384615384615384,
"mmlu_eval_accuracy_econometrics": 0.5833333333333334,
"mmlu_eval_accuracy_electrical_engineering": 0.625,
"mmlu_eval_accuracy_elementary_mathematics": 0.43902439024390244,
"mmlu_eval_accuracy_formal_logic": 0.21428571428571427,
"mmlu_eval_accuracy_global_facts": 0.4,
"mmlu_eval_accuracy_high_school_biology": 0.59375,
"mmlu_eval_accuracy_high_school_chemistry": 0.36363636363636365,
"mmlu_eval_accuracy_high_school_computer_science": 0.6666666666666666,
"mmlu_eval_accuracy_high_school_european_history": 0.8333333333333334,
"mmlu_eval_accuracy_high_school_geography": 0.8636363636363636,
"mmlu_eval_accuracy_high_school_government_and_politics": 0.7142857142857143,
"mmlu_eval_accuracy_high_school_macroeconomics": 0.6046511627906976,
"mmlu_eval_accuracy_high_school_mathematics": 0.2413793103448276,
"mmlu_eval_accuracy_high_school_microeconomics": 0.5769230769230769,
"mmlu_eval_accuracy_high_school_physics": 0.23529411764705882,
"mmlu_eval_accuracy_high_school_psychology": 0.85,
"mmlu_eval_accuracy_high_school_statistics": 0.34782608695652173,
"mmlu_eval_accuracy_high_school_us_history": 0.7727272727272727,
"mmlu_eval_accuracy_high_school_world_history": 0.7307692307692307,
"mmlu_eval_accuracy_human_aging": 0.7391304347826086,
"mmlu_eval_accuracy_human_sexuality": 0.5,
"mmlu_eval_accuracy_international_law": 0.9230769230769231,
"mmlu_eval_accuracy_jurisprudence": 0.6363636363636364,
"mmlu_eval_accuracy_logical_fallacies": 0.6666666666666666,
"mmlu_eval_accuracy_machine_learning": 0.45454545454545453,
"mmlu_eval_accuracy_management": 0.9090909090909091,
"mmlu_eval_accuracy_marketing": 0.88,
"mmlu_eval_accuracy_medical_genetics": 1.0,
"mmlu_eval_accuracy_miscellaneous": 0.7558139534883721,
"mmlu_eval_accuracy_moral_disputes": 0.5526315789473685,
"mmlu_eval_accuracy_moral_scenarios": 0.27,
"mmlu_eval_accuracy_nutrition": 0.696969696969697,
"mmlu_eval_accuracy_philosophy": 0.7647058823529411,
"mmlu_eval_accuracy_prehistory": 0.5142857142857142,
"mmlu_eval_accuracy_professional_accounting": 0.6451612903225806,
"mmlu_eval_accuracy_professional_law": 0.4,
"mmlu_eval_accuracy_professional_medicine": 0.6129032258064516,
"mmlu_eval_accuracy_professional_psychology": 0.6231884057971014,
"mmlu_eval_accuracy_public_relations": 0.5,
"mmlu_eval_accuracy_security_studies": 0.6296296296296297,
"mmlu_eval_accuracy_sociology": 0.8181818181818182,
"mmlu_eval_accuracy_us_foreign_policy": 0.9090909090909091,
"mmlu_eval_accuracy_virology": 0.5,
"mmlu_eval_accuracy_world_religions": 0.8421052631578947,
"mmlu_loss": 1.2932990876174781,
"step": 200
},
{
"epoch": 0.07,
"learning_rate": 0.0002,
"loss": 0.823,
"step": 210
},
{
"epoch": 0.07,
"learning_rate": 0.0002,
"loss": 0.8241,
"step": 220
},
{
"epoch": 0.07,
"learning_rate": 0.0002,
"loss": 0.8277,
"step": 230
},
{
"epoch": 0.08,
"learning_rate": 0.0002,
"loss": 0.8068,
"step": 240
},
{
"epoch": 0.08,
"learning_rate": 0.0002,
"loss": 0.7698,
"step": 250
},
{
"epoch": 0.08,
"learning_rate": 0.0002,
"loss": 0.8068,
"step": 260
},
{
"epoch": 0.09,
"learning_rate": 0.0002,
"loss": 0.7913,
"step": 270
},
{
"epoch": 0.09,
"learning_rate": 0.0002,
"loss": 0.8086,
"step": 280
},
{
"epoch": 0.09,
"learning_rate": 0.0002,
"loss": 0.8127,
"step": 290
},
{
"epoch": 0.1,
"learning_rate": 0.0002,
"loss": 0.7804,
"step": 300
},
{
"epoch": 0.1,
"learning_rate": 0.0002,
"loss": 0.7667,
"step": 310
},
{
"epoch": 0.1,
"learning_rate": 0.0002,
"loss": 0.757,
"step": 320
},
{
"epoch": 0.1,
"learning_rate": 0.0002,
"loss": 0.7438,
"step": 330
},
{
"epoch": 0.11,
"learning_rate": 0.0002,
"loss": 0.768,
"step": 340
},
{
"epoch": 0.11,
"learning_rate": 0.0002,
"loss": 0.8151,
"step": 350
},
{
"epoch": 0.11,
"learning_rate": 0.0002,
"loss": 0.7718,
"step": 360
},
{
"epoch": 0.12,
"learning_rate": 0.0002,
"loss": 0.7903,
"step": 370
},
{
"epoch": 0.12,
"learning_rate": 0.0002,
"loss": 0.7447,
"step": 380
},
{
"epoch": 0.12,
"learning_rate": 0.0002,
"loss": 0.7712,
"step": 390
},
{
"epoch": 0.13,
"learning_rate": 0.0002,
"loss": 0.7808,
"step": 400
},
{
"epoch": 0.13,
"eval_loss": 0.7457320690155029,
"eval_runtime": 152.8304,
"eval_samples_per_second": 6.543,
"eval_steps_per_second": 3.272,
"step": 400
},
{
"epoch": 0.13,
"mmlu_eval_accuracy": 0.5941853117334526,
"mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727,
"mmlu_eval_accuracy_anatomy": 0.5,
"mmlu_eval_accuracy_astronomy": 0.75,
"mmlu_eval_accuracy_business_ethics": 0.5454545454545454,
"mmlu_eval_accuracy_clinical_knowledge": 0.6206896551724138,
"mmlu_eval_accuracy_college_biology": 0.5625,
"mmlu_eval_accuracy_college_chemistry": 0.25,
"mmlu_eval_accuracy_college_computer_science": 0.2727272727272727,
"mmlu_eval_accuracy_college_mathematics": 0.5454545454545454,
"mmlu_eval_accuracy_college_medicine": 0.6363636363636364,
"mmlu_eval_accuracy_college_physics": 0.5454545454545454,
"mmlu_eval_accuracy_computer_security": 0.7272727272727273,
"mmlu_eval_accuracy_conceptual_physics": 0.5384615384615384,
"mmlu_eval_accuracy_econometrics": 0.5,
"mmlu_eval_accuracy_electrical_engineering": 0.5625,
"mmlu_eval_accuracy_elementary_mathematics": 0.4634146341463415,
"mmlu_eval_accuracy_formal_logic": 0.14285714285714285,
"mmlu_eval_accuracy_global_facts": 0.4,
"mmlu_eval_accuracy_high_school_biology": 0.625,
"mmlu_eval_accuracy_high_school_chemistry": 0.45454545454545453,
"mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556,
"mmlu_eval_accuracy_high_school_european_history": 0.7777777777777778,
"mmlu_eval_accuracy_high_school_geography": 0.8181818181818182,
"mmlu_eval_accuracy_high_school_government_and_politics": 0.7619047619047619,
"mmlu_eval_accuracy_high_school_macroeconomics": 0.6046511627906976,
"mmlu_eval_accuracy_high_school_mathematics": 0.1724137931034483,
"mmlu_eval_accuracy_high_school_microeconomics": 0.6923076923076923,
"mmlu_eval_accuracy_high_school_physics": 0.17647058823529413,
"mmlu_eval_accuracy_high_school_psychology": 0.8666666666666667,
"mmlu_eval_accuracy_high_school_statistics": 0.43478260869565216,
"mmlu_eval_accuracy_high_school_us_history": 0.7727272727272727,
"mmlu_eval_accuracy_high_school_world_history": 0.6538461538461539,
"mmlu_eval_accuracy_human_aging": 0.7391304347826086,
"mmlu_eval_accuracy_human_sexuality": 0.5,
"mmlu_eval_accuracy_international_law": 1.0,
"mmlu_eval_accuracy_jurisprudence": 0.6363636363636364,
"mmlu_eval_accuracy_logical_fallacies": 0.7222222222222222,
"mmlu_eval_accuracy_machine_learning": 0.5454545454545454,
"mmlu_eval_accuracy_management": 0.9090909090909091,
"mmlu_eval_accuracy_marketing": 0.88,
"mmlu_eval_accuracy_medical_genetics": 1.0,
"mmlu_eval_accuracy_miscellaneous": 0.7441860465116279,
"mmlu_eval_accuracy_moral_disputes": 0.6052631578947368,
"mmlu_eval_accuracy_moral_scenarios": 0.32,
"mmlu_eval_accuracy_nutrition": 0.6363636363636364,
"mmlu_eval_accuracy_philosophy": 0.7058823529411765,
"mmlu_eval_accuracy_prehistory": 0.6285714285714286,
"mmlu_eval_accuracy_professional_accounting": 0.5483870967741935,
"mmlu_eval_accuracy_professional_law": 0.4294117647058823,
"mmlu_eval_accuracy_professional_medicine": 0.6129032258064516,
"mmlu_eval_accuracy_professional_psychology": 0.5797101449275363,
"mmlu_eval_accuracy_public_relations": 0.5,
"mmlu_eval_accuracy_security_studies": 0.5555555555555556,
"mmlu_eval_accuracy_sociology": 0.8181818181818182,
"mmlu_eval_accuracy_us_foreign_policy": 0.8181818181818182,
"mmlu_eval_accuracy_virology": 0.3888888888888889,
"mmlu_eval_accuracy_world_religions": 0.8421052631578947,
"mmlu_loss": 1.0765447558606573,
"step": 400
},
{
"epoch": 0.13,
"learning_rate": 0.0002,
"loss": 0.7945,
"step": 410
},
{
"epoch": 0.13,
"learning_rate": 0.0002,
"loss": 0.8205,
"step": 420
},
{
"epoch": 0.14,
"learning_rate": 0.0002,
"loss": 0.8022,
"step": 430
},
{
"epoch": 0.14,
"learning_rate": 0.0002,
"loss": 0.7947,
"step": 440
},
{
"epoch": 0.14,
"learning_rate": 0.0002,
"loss": 0.8091,
"step": 450
},
{
"epoch": 0.15,
"learning_rate": 0.0002,
"loss": 0.8249,
"step": 460
},
{
"epoch": 0.15,
"learning_rate": 0.0002,
"loss": 0.8089,
"step": 470
},
{
"epoch": 0.15,
"learning_rate": 0.0002,
"loss": 0.7972,
"step": 480
},
{
"epoch": 0.16,
"learning_rate": 0.0002,
"loss": 0.8133,
"step": 490
},
{
"epoch": 0.16,
"learning_rate": 0.0002,
"loss": 0.8118,
"step": 500
},
{
"epoch": 0.16,
"learning_rate": 0.0002,
"loss": 0.8342,
"step": 510
},
{
"epoch": 0.16,
"learning_rate": 0.0002,
"loss": 0.8183,
"step": 520
},
{
"epoch": 0.17,
"learning_rate": 0.0002,
"loss": 0.7988,
"step": 530
},
{
"epoch": 0.17,
"learning_rate": 0.0002,
"loss": 0.8296,
"step": 540
},
{
"epoch": 0.17,
"learning_rate": 0.0002,
"loss": 0.7557,
"step": 550
},
{
"epoch": 0.18,
"learning_rate": 0.0002,
"loss": 0.7607,
"step": 560
},
{
"epoch": 0.18,
"learning_rate": 0.0002,
"loss": 0.7358,
"step": 570
},
{
"epoch": 0.18,
"learning_rate": 0.0002,
"loss": 0.7788,
"step": 580
},
{
"epoch": 0.19,
"learning_rate": 0.0002,
"loss": 0.7277,
"step": 590
},
{
"epoch": 0.19,
"learning_rate": 0.0002,
"loss": 0.7814,
"step": 600
},
{
"epoch": 0.19,
"eval_loss": 0.7431616187095642,
"eval_runtime": 152.711,
"eval_samples_per_second": 6.548,
"eval_steps_per_second": 3.274,
"step": 600
},
{
"epoch": 0.19,
"mmlu_eval_accuracy": 0.5964258160221073,
"mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727,
"mmlu_eval_accuracy_anatomy": 0.5,
"mmlu_eval_accuracy_astronomy": 0.6875,
"mmlu_eval_accuracy_business_ethics": 0.5454545454545454,
"mmlu_eval_accuracy_clinical_knowledge": 0.6551724137931034,
"mmlu_eval_accuracy_college_biology": 0.625,
"mmlu_eval_accuracy_college_chemistry": 0.25,
"mmlu_eval_accuracy_college_computer_science": 0.2727272727272727,
"mmlu_eval_accuracy_college_mathematics": 0.5454545454545454,
"mmlu_eval_accuracy_college_medicine": 0.6363636363636364,
"mmlu_eval_accuracy_college_physics": 0.45454545454545453,
"mmlu_eval_accuracy_computer_security": 0.7272727272727273,
"mmlu_eval_accuracy_conceptual_physics": 0.46153846153846156,
"mmlu_eval_accuracy_econometrics": 0.5,
"mmlu_eval_accuracy_electrical_engineering": 0.5625,
"mmlu_eval_accuracy_elementary_mathematics": 0.4878048780487805,
"mmlu_eval_accuracy_formal_logic": 0.14285714285714285,
"mmlu_eval_accuracy_global_facts": 0.4,
"mmlu_eval_accuracy_high_school_biology": 0.59375,
"mmlu_eval_accuracy_high_school_chemistry": 0.36363636363636365,
"mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556,
"mmlu_eval_accuracy_high_school_european_history": 0.8333333333333334,
"mmlu_eval_accuracy_high_school_geography": 0.8636363636363636,
"mmlu_eval_accuracy_high_school_government_and_politics": 0.7619047619047619,
"mmlu_eval_accuracy_high_school_macroeconomics": 0.6046511627906976,
"mmlu_eval_accuracy_high_school_mathematics": 0.3103448275862069,
"mmlu_eval_accuracy_high_school_microeconomics": 0.6153846153846154,
"mmlu_eval_accuracy_high_school_physics": 0.11764705882352941,
"mmlu_eval_accuracy_high_school_psychology": 0.8666666666666667,
"mmlu_eval_accuracy_high_school_statistics": 0.43478260869565216,
"mmlu_eval_accuracy_high_school_us_history": 0.8181818181818182,
"mmlu_eval_accuracy_high_school_world_history": 0.6923076923076923,
"mmlu_eval_accuracy_human_aging": 0.7391304347826086,
"mmlu_eval_accuracy_human_sexuality": 0.5,
"mmlu_eval_accuracy_international_law": 1.0,
"mmlu_eval_accuracy_jurisprudence": 0.6363636363636364,
"mmlu_eval_accuracy_logical_fallacies": 0.6666666666666666,
"mmlu_eval_accuracy_machine_learning": 0.6363636363636364,
"mmlu_eval_accuracy_management": 0.9090909090909091,
"mmlu_eval_accuracy_marketing": 0.84,
"mmlu_eval_accuracy_medical_genetics": 1.0,
"mmlu_eval_accuracy_miscellaneous": 0.7441860465116279,
"mmlu_eval_accuracy_moral_disputes": 0.5789473684210527,
"mmlu_eval_accuracy_moral_scenarios": 0.33,
"mmlu_eval_accuracy_nutrition": 0.7272727272727273,
"mmlu_eval_accuracy_philosophy": 0.7352941176470589,
"mmlu_eval_accuracy_prehistory": 0.5428571428571428,
"mmlu_eval_accuracy_professional_accounting": 0.5161290322580645,
"mmlu_eval_accuracy_professional_law": 0.4294117647058823,
"mmlu_eval_accuracy_professional_medicine": 0.5806451612903226,
"mmlu_eval_accuracy_professional_psychology": 0.6086956521739131,
"mmlu_eval_accuracy_public_relations": 0.5,
"mmlu_eval_accuracy_security_studies": 0.5925925925925926,
"mmlu_eval_accuracy_sociology": 0.9545454545454546,
"mmlu_eval_accuracy_us_foreign_policy": 0.7272727272727273,
"mmlu_eval_accuracy_virology": 0.5,
"mmlu_eval_accuracy_world_religions": 0.8421052631578947,
"mmlu_loss": 1.2551592476374176,
"step": 600
},
{
"epoch": 0.19,
"learning_rate": 0.0002,
"loss": 0.7796,
"step": 610
},
{
"epoch": 0.2,
"learning_rate": 0.0002,
"loss": 0.7174,
"step": 620
},
{
"epoch": 0.2,
"learning_rate": 0.0002,
"loss": 0.7717,
"step": 630
},
{
"epoch": 0.2,
"learning_rate": 0.0002,
"loss": 0.772,
"step": 640
},
{
"epoch": 0.21,
"learning_rate": 0.0002,
"loss": 0.8651,
"step": 650
},
{
"epoch": 0.21,
"learning_rate": 0.0002,
"loss": 0.7493,
"step": 660
},
{
"epoch": 0.21,
"learning_rate": 0.0002,
"loss": 0.802,
"step": 670
},
{
"epoch": 0.22,
"learning_rate": 0.0002,
"loss": 0.781,
"step": 680
},
{
"epoch": 0.22,
"learning_rate": 0.0002,
"loss": 0.7367,
"step": 690
},
{
"epoch": 0.22,
"learning_rate": 0.0002,
"loss": 0.7148,
"step": 700
},
{
"epoch": 0.22,
"learning_rate": 0.0002,
"loss": 0.7993,
"step": 710
},
{
"epoch": 0.23,
"learning_rate": 0.0002,
"loss": 0.8518,
"step": 720
},
{
"epoch": 0.23,
"learning_rate": 0.0002,
"loss": 0.7859,
"step": 730
},
{
"epoch": 0.23,
"learning_rate": 0.0002,
"loss": 0.8083,
"step": 740
},
{
"epoch": 0.24,
"learning_rate": 0.0002,
"loss": 0.7934,
"step": 750
},
{
"epoch": 0.24,
"learning_rate": 0.0002,
"loss": 0.8085,
"step": 760
},
{
"epoch": 0.24,
"learning_rate": 0.0002,
"loss": 0.7877,
"step": 770
},
{
"epoch": 0.25,
"learning_rate": 0.0002,
"loss": 0.7836,
"step": 780
},
{
"epoch": 0.25,
"learning_rate": 0.0002,
"loss": 0.7705,
"step": 790
},
{
"epoch": 0.25,
"learning_rate": 0.0002,
"loss": 0.7926,
"step": 800
},
{
"epoch": 0.25,
"eval_loss": 0.7437429428100586,
"eval_runtime": 152.6848,
"eval_samples_per_second": 6.549,
"eval_steps_per_second": 3.275,
"step": 800
},
{
"epoch": 0.25,
"mmlu_eval_accuracy": 0.5877186175074579,
"mmlu_eval_accuracy_abstract_algebra": 0.18181818181818182,
"mmlu_eval_accuracy_anatomy": 0.5,
"mmlu_eval_accuracy_astronomy": 0.6875,
"mmlu_eval_accuracy_business_ethics": 0.6363636363636364,
"mmlu_eval_accuracy_clinical_knowledge": 0.5517241379310345,
"mmlu_eval_accuracy_college_biology": 0.625,
"mmlu_eval_accuracy_college_chemistry": 0.25,
"mmlu_eval_accuracy_college_computer_science": 0.45454545454545453,
"mmlu_eval_accuracy_college_mathematics": 0.36363636363636365,
"mmlu_eval_accuracy_college_medicine": 0.5454545454545454,
"mmlu_eval_accuracy_college_physics": 0.5454545454545454,
"mmlu_eval_accuracy_computer_security": 0.7272727272727273,
"mmlu_eval_accuracy_conceptual_physics": 0.5,
"mmlu_eval_accuracy_econometrics": 0.4166666666666667,
"mmlu_eval_accuracy_electrical_engineering": 0.625,
"mmlu_eval_accuracy_elementary_mathematics": 0.36585365853658536,
"mmlu_eval_accuracy_formal_logic": 0.21428571428571427,
"mmlu_eval_accuracy_global_facts": 0.5,
"mmlu_eval_accuracy_high_school_biology": 0.59375,
"mmlu_eval_accuracy_high_school_chemistry": 0.45454545454545453,
"mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556,
"mmlu_eval_accuracy_high_school_european_history": 0.7777777777777778,
"mmlu_eval_accuracy_high_school_geography": 0.8181818181818182,
"mmlu_eval_accuracy_high_school_government_and_politics": 0.7142857142857143,
"mmlu_eval_accuracy_high_school_macroeconomics": 0.5581395348837209,
"mmlu_eval_accuracy_high_school_mathematics": 0.27586206896551724,
"mmlu_eval_accuracy_high_school_microeconomics": 0.6538461538461539,
"mmlu_eval_accuracy_high_school_physics": 0.11764705882352941,
"mmlu_eval_accuracy_high_school_psychology": 0.85,
"mmlu_eval_accuracy_high_school_statistics": 0.43478260869565216,
"mmlu_eval_accuracy_high_school_us_history": 0.7272727272727273,
"mmlu_eval_accuracy_high_school_world_history": 0.6923076923076923,
"mmlu_eval_accuracy_human_aging": 0.782608695652174,
"mmlu_eval_accuracy_human_sexuality": 0.5,
"mmlu_eval_accuracy_international_law": 0.9230769230769231,
"mmlu_eval_accuracy_jurisprudence": 0.5454545454545454,
"mmlu_eval_accuracy_logical_fallacies": 0.6111111111111112,
"mmlu_eval_accuracy_machine_learning": 0.6363636363636364,
"mmlu_eval_accuracy_management": 0.9090909090909091,
"mmlu_eval_accuracy_marketing": 0.84,
"mmlu_eval_accuracy_medical_genetics": 0.9090909090909091,
"mmlu_eval_accuracy_miscellaneous": 0.7209302325581395,
"mmlu_eval_accuracy_moral_disputes": 0.5789473684210527,
"mmlu_eval_accuracy_moral_scenarios": 0.26,
"mmlu_eval_accuracy_nutrition": 0.6666666666666666,
"mmlu_eval_accuracy_philosophy": 0.7352941176470589,
"mmlu_eval_accuracy_prehistory": 0.5714285714285714,
"mmlu_eval_accuracy_professional_accounting": 0.5806451612903226,
"mmlu_eval_accuracy_professional_law": 0.38823529411764707,
"mmlu_eval_accuracy_professional_medicine": 0.5806451612903226,
"mmlu_eval_accuracy_professional_psychology": 0.5942028985507246,
"mmlu_eval_accuracy_public_relations": 0.5,
"mmlu_eval_accuracy_security_studies": 0.6296296296296297,
"mmlu_eval_accuracy_sociology": 0.9090909090909091,
"mmlu_eval_accuracy_us_foreign_policy": 0.8181818181818182,
"mmlu_eval_accuracy_virology": 0.5,
"mmlu_eval_accuracy_world_religions": 0.8947368421052632,
"mmlu_loss": 1.1176312410955953,
"step": 800
}
],
"logging_steps": 10,
"max_steps": 9468,
"num_train_epochs": 3,
"save_steps": 200,
"total_flos": 4.89694738788778e+17,
"trial_name": null,
"trial_params": null
}