import torch import torch.nn as nn from transformers import PreTrainedModel from transformers.activations import ACT2FN from .configuration_projector import ProjectorConfig class ProjectorModel(PreTrainedModel): _auto_class = 'AutoModel' config_class = ProjectorConfig base_model_prefix = 'model' supports_gradient_checkpointing = True def __init__(self, config: ProjectorConfig) -> None: super().__init__(config) self.gradient_checkpointing = False modules = [ nn.Linear( config.visual_hidden_size, config.llm_hidden_size, bias=config.bias) ] for _ in range(1, config.depth): modules.append(ACT2FN[config.hidden_act]) modules.append( nn.Linear( config.llm_hidden_size, config.llm_hidden_size, bias=config.bias)) self.model = nn.Sequential(*modules) def enable_input_require_grads(self): def make_inputs_require_grad(module, input, output): output.requires_grad_(True) self.model.register_forward_hook(make_inputs_require_grad) def _set_gradient_checkpointing(self, module, value=False): if isinstance(module, ProjectorModel): module.gradient_checkpointing = value def forward(self, x): if self.gradient_checkpointing and self.training: layer_outputs = torch.utils.checkpoint.checkpoint(self.model, x) else: layer_outputs = self.model(x) return layer_outputs