Object Detection
vision
nanotracker-hf / dataloader.py
sonebu
update email
df8cf63
###########################################################################
# Computer vision - Embedded person tracking demo software by HyperbeeAI. #
# Copyrights © 2023 Hyperbee.AI Inc. All rights reserved. hello@hyperbee.ai #
###########################################################################
import os, sys, random, torch, torchvision
from torchvision import transforms
from torchvision.datasets.vision import VisionDataset
import torchvision.ops as ops
import torch.utils.data
import numpy as np
import pandas as pd
import copy
from PIL import Image
import os.path
import time, json
from typing import Any, Callable, Optional, Tuple, List
from typing import Callable
class input_fxpt_normalize:
def __init__(self, act_8b_mode):
self.act_8b_mode = act_8b_mode
def __call__(self, img):
if(self.act_8b_mode):
return img.sub(0.5).mul(256.).round().clamp(min=-128, max=127)
return img.sub(0.5).mul(256.).round().clamp(min=-128, max=127).div(128.)
### Emre Can: Our COCO Dataloder for training classes at specific ratio in every batch.
def class_lookup(cls):
c = list(cls.__bases__)
for base in c:
c.extend(class_lookup(base))
return c
# ref: https://pytorch.org/vision/main/_modules/torchvision/datasets/coco.html
class CocoDetection(VisionDataset):
"""`MS Coco Detection <https://cocodataset.org/#detection-2016>`_ Dataset.
Args:
root (string): Root directory where images are downloaded to.
annFile (string): Path to json annotation file.
scaleImgforCrop (int, optional): Img and target BBs are scaled with
constant aspect ratio st:
if image width, image height > scaleImgforCrop image is shrinked
until width or height becomes equal to scaleImgforCrop
if image width, image height < scaleImgforCrop image is expanded
until width or height becomes equal to scaleImgforCrop
else no scaling
fit_full_img: If it is set to true, image is scaled t fully fit in the window specified by "scaleImgforCrop x scaleImgforCrop"
transform (callable, optional): A function/transform that takes in an
PIL image and returns a transformed version. E.g, ``transforms.ToTensor``
target_transform (callable, optional): A function/transform that takes in
the target and transforms it.
transforms (callable, optional): A function/transform that takes input
sample and its target as entry and returns a transformed version.
"""
def __init__(
self,
root: str,
annFile: str,
scaleImgforCrop: int= None,
fit_full_img = False,
transform: Optional[Callable] = None,
target_transform: Optional[Callable] = None,
transforms: Optional[Callable] = None
):
super().__init__(root, transforms, transform, target_transform)
from pycocotools.coco import COCO
self.coco = COCO(annFile)
self.ids = list(sorted(self.coco.imgs.keys()))
self.annFilePath = os.path.join('.',annFile)
self.catPersonId = self.coco.getCatIds(catNms=['person'])[0]
self.scaleImgforCrop = scaleImgforCrop
self.fit_full_img = fit_full_img
def _load_image(self, id: int) -> Image.Image:
path = self.coco.loadImgs(id)[0]["file_name"]
return Image.open(os.path.join(self.root, path)).convert("RGB")
def _load_target(self, id) -> List[Any]:
return self.coco.loadAnns(self.coco.getAnnIds(id, iscrowd=False))
def __getitem__(self, index: int) -> Tuple[Any, Any, Any]:
id = self.ids[index]
imgID = id
try:
image = self._load_image(id)
except:
print(f'********Unable to load image with id: {imgID}********')
print('Please check if image is corrupted, and remove it from annotations if necessary.')
target = copy.deepcopy(self._load_target(id)) # deepcopy target list beforecentercrop manip, to be abe to work with same
# dateset without reloading it
image_width = image.size[0]
image_height = image.size[1]
# If necesary rescale the image and BBs near the size of planned center crop as much as possible
scale = self._calcPrescale(image_width=image_width, image_height=image_height)
image = self._prescaleImage(image, scale)
for i, t in enumerate(target):
BB = t['bbox'].copy()
scaledBB = self._prescaleBB(BB,scale)
target[i]['bbox'] = scaledBB
# Image width height after prescaling
image_width = image.size[0]
image_height = image.size[1]
# Check if center crop applied
centerCropped = False
if self.transforms is not None:
image, target = self.transforms(image, target)
# If center crop applied, transform BBs as well
for t in self.transforms.transform.transforms:
if (type(t) == torchvision.transforms.transforms.CenterCrop):
centerCropped = True
x_scale = image.size(2) / image_width
y_scale = image.size(1) / image_height
bbox_arr = []
for idx,ann in enumerate(target):
if ann['category_id'] == self.catPersonId:
crop_size = image.shape[1]
if centerCropped:
bbox = ann['bbox'].copy()
croppedBB = self.cropBBox(bbox, crop_size,image_height,image_width)
else:
croppedBB = torch.tensor(ann['bbox'])
if not (croppedBB == None):
bbox_arr.append(croppedBB)
if len(bbox_arr) != 0:
bbox_arr = torch.stack(bbox_arr)
wh = bbox_arr[:, 2:]
xy = bbox_arr[:, :2]
id_tensor = torch.tensor([id]).unsqueeze(0).expand(bbox_arr.size(0), -1)
bbox_arr = torch.cat([id_tensor, xy, wh], dim=-1)
else:
bbox_arr = torch.tensor(bbox_arr)
return image, bbox_arr , imgID
def __len__(self) -> int:
return len(self.ids)
def get_labels(self):
labels = []
for id in self.ids:
anns = self._load_target(id)
person_flag = False
for ann in anns:
person_flag = ann['category_id'] == self.catPersonId
if person_flag == True:
break
if person_flag == True:
labels.append(1)
else:
labels.append(0)
return torch.tensor(labels)
def get_cat_person_id(self):
return self.catPersonId
def get_coco_api(self):
return self.coco
# Functions defined for prescaling images/targets before center crop operation
def _calcPrescale(self, image_width, image_height):
# Calculate scale factor to shrink/expand image to coincide width or height to croppig area
scale = 1.0
if self.scaleImgforCrop != None:
if self.fit_full_img:
max_size = max(image_width, image_height)
scale = max_size/self.scaleImgforCrop
else:
# image fully encapsulates cropping area or vice versa
if ((image_width-self.scaleImgforCrop)*(image_height-self.scaleImgforCrop) > 0):
# if width of original image is closer to crop area
if abs(1-image_width/self.scaleImgforCrop) < abs(1-image_height/self.scaleImgforCrop):
scale = image_width/self.scaleImgforCrop
else:
scale = image_height/self.scaleImgforCrop
return scale
# Scales the image with defined scale
def _prescaleImage(self, image, scale):
image_width = int(image.size[0]/scale)
image_height = int(image.size[1]/scale)
t = transforms.Resize([image_height,image_width])
image = t(image)
return image
# Scales the targets with defined scale
def _prescaleBB(self, BB, scale):
scaledbb = [round(p/scale,1) for p in BB]
return scaledbb
def cropBBox(self,bbox,crop_size, image_height, image_width):
bbox_aligned = []
x, y, w, h = bbox[0], bbox[1], bbox[2], bbox[3]
# Casses for cropping
if image_height < crop_size:
offset = (crop_size - image_height) // 2
y = y + offset
if (y+h) > crop_size:
offset = (y+h)-crop_size
h = h - offset
if image_width < crop_size:
offset = (crop_size - image_width) // 2
x = x + offset
if (x+w) > crop_size:
offset = (x+w)-crop_size
w = w - offset
if image_width > crop_size:
offset = (image_width - crop_size) // 2
if offset > x:
# Deal with BB coincide with left cropping boundary
w = w -(offset-x)
x = 0
else:
x = x - offset
# Deal with BB coincide with right cropping boundary
if (x+w) > crop_size:
offset = (x+w)-crop_size
w = w - offset
if image_height > crop_size:
offset = (image_height - crop_size) // 2
if offset > y:
# Deal with BB coincide with top cropping boundary
h = h -(offset-y)
y = 0
else:
y = y - offset
# Deal with BB coincide with bottom cropping boundary
if (y+h) > crop_size:
offset = (y+h)-crop_size
h = h - offset
bbox_aligned.append(x)
bbox_aligned.append(y)
bbox_aligned.append(w)
bbox_aligned.append(h)
if ((w <= 0) or (h <= 0)):
return None
else:
x_scale, y_scale = 1.0,1.0
return torch.mul(torch.tensor(bbox_aligned), torch.tensor([x_scale, y_scale, x_scale, y_scale]))
def __round_floats(self,o):
'''
Used to round floats before writing to json file
'''
if isinstance(o, float):
return round(o, 2)
if isinstance(o, dict):
return {k: self.__round_floats(v) for k, v in o.items()}
if isinstance(o, (list, tuple)):
return [self.__round_floats(x) for x in o]
return o
def _check_if_annot_ignored(self, annot_bbox, ignore_bboxes):
'''gets an annotation and ignore bboxes list in [xmin, ymin, w, h] form and calculates the percentage
of the overlapping area. If overlapping area exceeds 50% for any ignore part, returns True, otherwise returns False
'''
annot_bbox = annot_bbox.copy()
annot_area = max(annot_bbox[2] * annot_bbox[3], 0)
annot_bbox[2] = annot_bbox[0] + annot_bbox[2]
annot_bbox[3] = annot_bbox[1] + annot_bbox[3]
for ignore_bbox in ignore_bboxes:
ignore_bbox = ignore_bbox.copy()
ignore_bbox[2] = ignore_bbox[0] + ignore_bbox[2]
ignore_bbox[3] = ignore_bbox[1] + ignore_bbox[3]
x_min_intersect = max(annot_bbox[0], ignore_bbox[0])
y_min_intersect = max(annot_bbox[1], ignore_bbox[1])
x_max_intersect = min(annot_bbox[2], ignore_bbox[2])
y_max_intersect = min(annot_bbox[3], ignore_bbox[3])
w = max(x_max_intersect - x_min_intersect, 0)
h = max(y_max_intersect - y_min_intersect, 0)
if annot_area <= 0:
return True
if w * h / annot_area > 0.5:
return True
return False
def createResizedAnnotJson(self,targetFileName,cropsize=512, mask_ignore_parts=False, ignore_parts_file=None):
'''
Resizes person annotations after center crop operation and saves as json file to the
directory of original annotations with the name "targetFileName"
If 'mask_ignore_parts' flag set to true and corresponding wider dataset ignore_parts_file supplied,
annotations having 50% or more overlap with an ignore part are deleted.
'''
# Get ignore part bb's in to a dictionary, wit image names as keys
if mask_ignore_parts:
ignore_part_dict = {}
with open(ignore_parts_file) as f:
for t, ignore_raw in enumerate(f):
ignore_raw = ignore_raw.split()
imgName = ignore_raw[:1][0]
BBs_str = ignore_raw[1:]
bb_raw = [int(bb) for bb in BBs_str]
BBs = []
bb = []
for i, p in enumerate(bb_raw):
bb.append(p)
if ((i+1)%4 == 0):
BBs.append(bb)
bb = []
ignore_part_dict[imgName] = BBs
t1 = time.time()
# Get original json annot file path, and create pah for resized json annot file
path, annotfilename = os.path.split(self.annFilePath)
resizedAnnotPath = os.path.join(path,targetFileName)
print('')
print(f'Creating Json file for resized annotations: {resizedAnnotPath}')
# Load original annotation json file as dictionary and assign it to resized annot dict
with open(self.annFilePath) as json_file:
resizedanotDict = json.load(json_file)
# Original annotations array
origannList = resizedanotDict['annotations']
# Check if center crop applied
centerCropped = False
if self.transforms is not None:
# If center crop applied, transform BBs as well
for t in self.transforms.transform.transforms:
if (type(t) == torchvision.transforms.transforms.CenterCrop):
centerCropped = True
resizedannList = []
for resizedannot in origannList:
currentcatID = resizedannot['category_id']
currentBB = resizedannot['bbox']
currentImgID = resizedannot['image_id']
# if annotations overlaps with an ignore part, do not add it to new annot file
if mask_ignore_parts:
image_name = self.coco.loadImgs(currentImgID)[0]['file_name']
if image_name in ignore_part_dict:
ignoreBBs = ignore_part_dict[image_name]
is_ignored = False
is_ignored = self._check_if_annot_ignored(resizedannot['bbox'].copy(), ignoreBBs)
if is_ignored:
continue
# Get crop size and original image sizes
image_width = self.coco.loadImgs(currentImgID)[0]['width']
image_height = self.coco.loadImgs(currentImgID)[0]['height']
# If presclae applied to image, calculate new image width and height
scale = self._calcPrescale(image_width=image_width, image_height=image_height)
image_width = image_width / scale
image_height = image_height / scale
if currentcatID == self.catPersonId:
# if BB is person
bbox = resizedannot['bbox'].copy()
# If prescale appied to image, resize annotations BBs
bbox = self._prescaleBB(bbox, scale)
# If center crop applied, crop/recalculate BBs as well
if centerCropped:
croppedBB = self.cropBBox(bbox, cropsize,image_height,image_width)
else:
croppedBB = torch.tensor(bbox)
if (croppedBB != None):
# If BB is person and valid after crop, add it to resized annotations list
croppedBB = croppedBB.tolist()
resizedannot['bbox'] = self.__round_floats(croppedBB)
resizedannot['area'] = self.__round_floats(croppedBB[2]*croppedBB[3])
resizedannList.append(resizedannot)
else:
# If BB is non-person add it to resized annotations list as it is
resizedannList.append(resizedannot)
# If prescale or center-crop applied
# Change width and height information of "images" field in annotations file
origImgList = resizedanotDict['images']
for i, imagInfo in enumerate(origImgList):
curInfo = origImgList[i]
image_width = curInfo['width']
image_height = curInfo['height']
if centerCropped:
curInfo['width'] = cropsize
curInfo['height'] = cropsize
else:
scale = self._calcPrescale(image_width=image_width, image_height=image_height)
curInfo['width'] = int(image_width / scale)
curInfo['height'] = int(image_height / scale)
origImgList[i] = curInfo.copy()
resizedanotDict['images'] = origImgList
resizedanotDict['annotations'] = resizedannList
print('Saving resized annotations to json file...')
# Save resized annotations in json file
resizedanotDict = json.dumps(resizedanotDict)
with open(resizedAnnotPath, 'w') as outfile:
outfile.write(resizedanotDict)
print(f'{resizedAnnotPath} saved.')
t2 = time.time()
print(f'Elapsed time: {t2-t1} seconds')
# ref: https://github.com/ufoym/imbalanced-dataset-sampler
class ImbalancedDatasetSampler(torch.utils.data.sampler.Sampler):
"""Samples elements randomly from a given list of indices for imbalanced dataset
Arguments:
indices: a list of indices
num_samples: number of samples to draw
constantSeed: Make it true if you want same random at each run
callback_get_label: a callback-like function which takes two arguments - dataset and index
"""
def __init__(self, dataset,constantSeed: bool = False, indices: list = None, num_samples: int = None,
callback_get_label: Callable = None, ratio: int = 4):
# if indices is not provided, all elements in the dataset will be considered
self.constantSeed = constantSeed
self.indices = list(range(len(dataset))) if indices is None else indices
# define custom callback
self.callback_get_label = callback_get_label
# if num_samples is not provided, draw `len(indices)` samples in each iteration
self.num_samples = len(self.indices) if num_samples is None else num_samples
# distribution of classes in the dataset
df = pd.DataFrame()
df["label"] = self._get_labels(dataset)
df.index = self.indices
df = df.sort_index()
label_to_count = df["label"].value_counts()
label_to_count[1] = int(label_to_count[1] / ratio)
weights = 1.0 / label_to_count[df["label"]]
self.weights = torch.DoubleTensor(weights.to_list())
def _get_labels(self, dataset):
return dataset.get_labels()
def __iter__(self):
if self.constantSeed:
torch.random.manual_seed(1234)
return (self.indices[i] for i in torch.multinomial(self.weights, self.num_samples, replacement=True))
def __len__(self):
return self.num_samples