dariuslimzh commited on
Commit
28c63da
·
verified ·
1 Parent(s): 85ceed5

Training completed

Browse files
Files changed (1) hide show
  1. README.md +69 -0
README.md ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: ICT2214Team7/RoBERTa_Test_Training
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - precision
8
+ - recall
9
+ - f1
10
+ - accuracy
11
+ model-index:
12
+ - name: RoBERTa_Combined_Generated_v2_2000_Fold5
13
+ results: []
14
+ ---
15
+
16
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
17
+ should probably proofread and complete it, then remove this comment. -->
18
+
19
+ # RoBERTa_Combined_Generated_v2_2000_Fold5
20
+
21
+ This model is a fine-tuned version of [ICT2214Team7/RoBERTa_Test_Training](https://huggingface.co/ICT2214Team7/RoBERTa_Test_Training) on an unknown dataset.
22
+ It achieves the following results on the evaluation set:
23
+ - Loss: 0.0438
24
+ - Precision: 0.8787
25
+ - Recall: 0.9432
26
+ - F1: 0.9098
27
+ - Accuracy: 0.9869
28
+ - Report: {'AGE': {'precision': 0.9727272727272728, 'recall': 0.9907407407407407, 'f1-score': 0.981651376146789, 'support': 108}, 'LOC': {'precision': 0.7784810126582279, 'recall': 0.924812030075188, 'f1-score': 0.845360824742268, 'support': 266}, 'NAT': {'precision': 0.8813559322033898, 'recall': 0.9570552147239264, 'f1-score': 0.9176470588235294, 'support': 163}, 'ORG': {'precision': 0.9379310344827586, 'recall': 0.912751677852349, 'f1-score': 0.9251700680272109, 'support': 149}, 'PER': {'precision': 0.9559748427672956, 'recall': 0.9559748427672956, 'f1-score': 0.9559748427672956, 'support': 159}, 'micro avg': {'precision': 0.8787210584343991, 'recall': 0.9431952662721893, 'f1-score': 0.9098173515981735, 'support': 845}, 'macro avg': {'precision': 0.9052940189677889, 'recall': 0.9482669012319, 'f1-score': 0.9251608341014187, 'support': 845}, 'weighted avg': {'precision': 0.8846665513712635, 'recall': 0.9431952662721893, 'f1-score': 0.9116108150645991, 'support': 845}}
29
+
30
+ ## Model description
31
+
32
+ More information needed
33
+
34
+ ## Intended uses & limitations
35
+
36
+ More information needed
37
+
38
+ ## Training and evaluation data
39
+
40
+ More information needed
41
+
42
+ ## Training procedure
43
+
44
+ ### Training hyperparameters
45
+
46
+ The following hyperparameters were used during training:
47
+ - learning_rate: 5e-05
48
+ - train_batch_size: 8
49
+ - eval_batch_size: 8
50
+ - seed: 42
51
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
52
+ - lr_scheduler_type: linear
53
+ - num_epochs: 3
54
+
55
+ ### Training results
56
+
57
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | Report |
58
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|
59
+ | No log | 1.0 | 160 | 0.0554 | 0.8542 | 0.9361 | 0.8933 | 0.9826 | {'AGE': {'precision': 0.9727272727272728, 'recall': 0.9907407407407407, 'f1-score': 0.981651376146789, 'support': 108}, 'LOC': {'precision': 0.7591463414634146, 'recall': 0.9360902255639098, 'f1-score': 0.8383838383838383, 'support': 266}, 'NAT': {'precision': 0.8579234972677595, 'recall': 0.9631901840490797, 'f1-score': 0.907514450867052, 'support': 163}, 'ORG': {'precision': 0.8904109589041096, 'recall': 0.87248322147651, 'f1-score': 0.8813559322033899, 'support': 149}, 'PER': {'precision': 0.9308176100628931, 'recall': 0.9308176100628931, 'f1-score': 0.9308176100628931, 'support': 159}, 'micro avg': {'precision': 0.8542116630669546, 'recall': 0.936094674556213, 'f1-score': 0.8932806324110671, 'support': 845}, 'macro avg': {'precision': 0.88220513608509, 'recall': 0.9386643963786266, 'f1-score': 0.9079446415327924, 'support': 845}, 'weighted avg': {'precision': 0.8609470239232793, 'recall': 0.936094674556213, 'f1-score': 0.8950004012113477, 'support': 845}} |
60
+ | No log | 2.0 | 320 | 0.0414 | 0.8776 | 0.9337 | 0.9048 | 0.9863 | {'AGE': {'precision': 0.9727272727272728, 'recall': 0.9907407407407407, 'f1-score': 0.981651376146789, 'support': 108}, 'LOC': {'precision': 0.7672955974842768, 'recall': 0.9172932330827067, 'f1-score': 0.8356164383561644, 'support': 266}, 'NAT': {'precision': 0.8953488372093024, 'recall': 0.9447852760736196, 'f1-score': 0.9194029850746268, 'support': 163}, 'ORG': {'precision': 0.9241379310344827, 'recall': 0.8993288590604027, 'f1-score': 0.9115646258503401, 'support': 149}, 'PER': {'precision': 0.974025974025974, 'recall': 0.9433962264150944, 'f1-score': 0.9584664536741214, 'support': 159}, 'micro avg': {'precision': 0.8776418242491657, 'recall': 0.9337278106508876, 'f1-score': 0.9048165137614678, 'support': 845}, 'macro avg': {'precision': 0.9067071224962617, 'recall': 0.9391088670745129, 'f1-score': 0.9213403758204084, 'support': 845}, 'weighted avg': {'precision': 0.8848091318872748, 'recall': 0.9337278106508876, 'f1-score': 0.906951838082418, 'support': 845}} |
61
+ | No log | 3.0 | 480 | 0.0438 | 0.8787 | 0.9432 | 0.9098 | 0.9869 | {'AGE': {'precision': 0.9727272727272728, 'recall': 0.9907407407407407, 'f1-score': 0.981651376146789, 'support': 108}, 'LOC': {'precision': 0.7784810126582279, 'recall': 0.924812030075188, 'f1-score': 0.845360824742268, 'support': 266}, 'NAT': {'precision': 0.8813559322033898, 'recall': 0.9570552147239264, 'f1-score': 0.9176470588235294, 'support': 163}, 'ORG': {'precision': 0.9379310344827586, 'recall': 0.912751677852349, 'f1-score': 0.9251700680272109, 'support': 149}, 'PER': {'precision': 0.9559748427672956, 'recall': 0.9559748427672956, 'f1-score': 0.9559748427672956, 'support': 159}, 'micro avg': {'precision': 0.8787210584343991, 'recall': 0.9431952662721893, 'f1-score': 0.9098173515981735, 'support': 845}, 'macro avg': {'precision': 0.9052940189677889, 'recall': 0.9482669012319, 'f1-score': 0.9251608341014187, 'support': 845}, 'weighted avg': {'precision': 0.8846665513712635, 'recall': 0.9431952662721893, 'f1-score': 0.9116108150645991, 'support': 845}} |
62
+
63
+
64
+ ### Framework versions
65
+
66
+ - Transformers 4.40.2
67
+ - Pytorch 2.3.0+cu121
68
+ - Datasets 2.19.1
69
+ - Tokenizers 0.19.1