suolyer commited on
Commit
1786133
·
1 Parent(s): 252302f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +0 -20
README.md CHANGED
@@ -34,26 +34,6 @@ The core idea of UniEX is to transform information extraction into token-pair ta
34
  Because UniEX can unify all extraction tasks, and after pre-training, UniEX has strong Few-Shot and Zero-shot performance. We use the structured data of Baidu Encyclopedia to build a weakly supervised data set. After cleaning, we get about 600M data. In addition, we also collected 16 entity recognition, 7 relationship extraction, 6 event extraction, and 11 reading comprehension data sets. . We mix this data and feed it to the model for pre-training
35
 
36
 
37
- ### 下游效果 Performance
38
- | Task type | Datsset | TANL(t5-base) | UniEX(roberta-base) | UIE(t5-large) | UniEX(roberta-large) |
39
- |:-------------------------:|:-------------:|:-------------:|:-------------------:|:-------------:|:--------------------:|
40
- | Relation Extraction | CoNLL04 | 71.4 | 71.79 | 73.07 | 73.4 |
41
- | | SciERC | - | - | 33.36 | 38 |
42
- | | ACE05 | 63.7 | 63.64 | 64.68 | 64.9 |
43
- | | ADE | 80.6 | 83.81 | - | - |
44
- | Nemed Entity Recognition | CoNNL03 | 91.7 | 92.13 | 92.17 | 92.65 |
45
- | | ACE04 | - | - | 86.52 | 87.12 |
46
- | | ACE05 | 84.9 | 85.96 | 85.52 | 87.02 |
47
- | | GENIA | 76.4 | 76.69 | - | - |
48
- | Sentiment Extraction | 14lap | - | - | 63.15 | 65.23 |
49
- | | 14res | - | - | 73.78 | 74.77 |
50
- | | 15res | - | - | 66.1 | 68.58 |
51
- | | 16res | - | - | 73.87 | 76.02 |
52
- | Event Extraction | ACE05-Trigger | 68.4 | 70.86 | 72.63 | 74.08 |
53
- | | ACE05-Role | 47.6 | 50.67 | 54.67 | 53.92 |
54
- | | CASIE-Trigger | - | - | 68.98 | 71.46 |
55
- | | CASIE-Role | - | - | 60.37 | 62.91 |
56
-
57
  ## 使用 Usage
58
  ```shell
59
  git clone https://github.com/IDEA-CCNL/Fengshenbang-LM.git
 
34
  Because UniEX can unify all extraction tasks, and after pre-training, UniEX has strong Few-Shot and Zero-shot performance. We use the structured data of Baidu Encyclopedia to build a weakly supervised data set. After cleaning, we get about 600M data. In addition, we also collected 16 entity recognition, 7 relationship extraction, 6 event extraction, and 11 reading comprehension data sets. . We mix this data and feed it to the model for pre-training
35
 
36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37
  ## 使用 Usage
38
  ```shell
39
  git clone https://github.com/IDEA-CCNL/Fengshenbang-LM.git