File size: 8,589 Bytes
7b6241f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 |
"""
Processor class for Molmo.
"""
from typing import Optional
import PIL
from PIL import Image
try:
from typing import Unpack
except ImportError:
from typing_extensions import Unpack
import re
from typing import List, Optional, Union
import numpy as np
import torch
import torchvision.transforms.functional as F
from transformers import AutoTokenizer
from transformers.image_utils import ImageInput
from transformers.processing_utils import (ProcessingKwargs, ProcessorMixin,
TextKwargs)
from transformers.tokenization_utils_base import PreTokenizedInput, TextInput
from transformers.utils import logging
logger = logging.get_logger(__name__)
IGNORE_INDEX = -100
DEFAULT_PAD_TOKEN_INDEX = 0
IMAGE_TOKEN_INDEX = -200
DEFAULT_IMAGE_TOKEN = "<image>"
# For Objects
DEFAULT_OBJECT_TOKEN = "<obj<i>>"
DEFAULT_OBJECT_FEATURE_TOKEN = "<objfeat>"
DEFAULT_OBJECT_INDEX = -300
# For Grounding
DEFAULT_GROUNDING_START = "<ground>"
DEFAULT_GROUNDING_END = "</ground>"
DEFAULT_GROUNDING_OBJECTS_START = "<objects>"
DEFAULT_GROUNDING_OBJECTS_END = "</objects>"
def xyxy_to_xywh(boxes):
"""
Convert boxes from xywh to xyxy format.
Parameters:
boxes (numpy.ndarray): An array of shape (N, 4) where N is the number of boxes.
Each box is represented as [x, y, x, y].
Returns:
numpy.ndarray: An array of shape (N, 4) where each box is represented as [x_min, y_min, w, h].
"""
boxes = np.array(boxes)
x_min, y_min, x_max, y_max = (
boxes[:, 0],
boxes[:, 1],
boxes[:, 2],
boxes[:, 3],
)
w = x_max - x_min
h = y_max - y_min
return np.stack([x_min, y_min, w, h], axis=1)
def xywh_to_xyxy(boxes):
"""
Convert boxes from xywh to xyxy format.
Parameters:
boxes (numpy.ndarray): An array of shape (N, 4) where N is the number of boxes.
Each box is represented as [x, y, width, height].
Returns:
numpy.ndarray: An array of shape (N, 4) where each box is represented as [x_min, y_min, x_max, y_max].
"""
boxes = np.array(boxes)
x, y, width, height = (
boxes[:, 0],
boxes[:, 1],
boxes[:, 2],
boxes[:, 3],
)
x_max = x + width
y_max = y + height
return np.stack([x, y, x_max, y_max], axis=1)
def expand2square(pil_img, background_color):
width, height = pil_img.size
if width == height:
return pil_img
elif width > height:
result = Image.new(pil_img.mode, (width, width), background_color)
result.paste(pil_img, (0, (width - height) // 2))
return result
else:
result = Image.new(pil_img.mode, (height, height), background_color)
result.paste(pil_img, ((height - width) // 2, 0))
return result
def pad_boxes(gt_boxes, old_size):
old_w, old_h = old_size
gt_boxes = np.array(gt_boxes).astype(np.float32)
# Calculate the padding added
if old_w > old_h:
pad_top = (old_w - old_h) // 2
pad_bottom = old_w - old_h - pad_top
pad_left, pad_right = 0, 0
else:
pad_left = (old_h - old_w) // 2
pad_right = old_h - old_w - pad_left
pad_top, pad_bottom = 0, 0
# Adjust the boxes for padding
gt_boxes[:, 0] += pad_left # x
gt_boxes[:, 1] += pad_top # y
return gt_boxes
def resize_boxes(gt_boxes, old_size, new_size):
old_w, old_h = old_size
new_h, new_w = new_size
gt_boxes = np.array(gt_boxes).astype(np.float32)
# Calculate scale factors
scale_x = new_w / max(old_w, old_h)
scale_y = new_h / max(old_w, old_h)
# Resize the boxes
gt_boxes[:, 0] *= scale_x # x
gt_boxes[:, 1] *= scale_y # y
gt_boxes[:, 2] *= scale_x # w
gt_boxes[:, 3] *= scale_y # h
return gt_boxes
def split_special_strings(input_string: str, special_strings: list[str] = None):
"""Split the input string into a list of strings, keeping the special strings.
Args:
input_string (str): The input string to split.
Example:
input_string = "<image>\n<obj0><objfeat><obj1><objfeat>\n I am happy today."
output = ['<image>', '\n<obj0>', '<objfeat>', '<obj1>', '<objfeat>', '\n I am happy today.']
Returns:
list: A list of strings, with the special strings separated from the rest of the input string.
"""
# Create a regex pattern to match the special strings
pattern = "|".join(map(re.escape, special_strings))
# Split the input string using the pattern, keeping the special strings in the result
split_list = re.split(f"({pattern})", input_string)
# Remove empty strings from the list
split_list = [s for s in split_list if s]
return split_list
def tokenizer_image_object_token(prompt, tokenizer):
bos_token_id = tokenizer.bos_token_id
split_tokens = [DEFAULT_IMAGE_TOKEN, DEFAULT_OBJECT_FEATURE_TOKEN]
chunks = split_special_strings(prompt, split_tokens)
input_encode = [bos_token_id]
for chunk in chunks:
if chunk == DEFAULT_IMAGE_TOKEN:
input_encode.append(IMAGE_TOKEN_INDEX)
elif chunk == DEFAULT_OBJECT_FEATURE_TOKEN:
input_encode.append(DEFAULT_OBJECT_INDEX)
else:
input_encode.extend(tokenizer.encode(chunk, add_special_tokens=False))
return input_encode
class ChatRexProcessor(ProcessorMixin):
attributes = ["image_processor", "tokenizer"]
image_processor_class = "AutoImageProcessor"
tokenizer_class = "AutoTokenizer"
def __init__(self, image_processor = None, tokenizer : AutoTokenizer = None, **kwargs):
# self.image_processor = image_processor
# self.tokenizer = tokenizer
super().__init__(image_processor, tokenizer)
self._special_tokens = None
self.template = dict(
SYSTEM=('A chat between a curious user and an artificial '
'intelligence assistant. The assistant gives '
'helpful, detailed, and polite answers to the '
'user\'s questions. {system}\n '),
INSTRUCTION=('USER: {input} ASSISTANT:'),
SEP='\n')
def process(
self,
image: Union[str, Image.Image],
bbox: List[List[int]],
question: str,
):
"""Prepare input data for inference.
Args:
image (Union[str, Image.Image]): The image to process.
bbox (List[List[int]]): A list of bounding boxes for the image. Each bounding box should
be in order of [x, y, x , y].
question (str): The question to ask about the image.
"""
data_dict = {}
# step1 load image
if type(image) == str:
image = Image.open(image).convert("RGB")
ori_w, ori_h = F.get_image_size(image)
image = expand2square(
image,
tuple(int(x * 255) for x in self.image_processor.image_mean),
)
pad_w, pad_h = F.get_image_size(image)
image_aux = self.image_processor.preprocess(image, return_tensors="pt")[
"pixel_values"
][0]
resize_h, resize_w = image_aux.shape[-2:]
data_dict["pixel_values_aux"] = image_aux.unsqueeze(0)
image = image_aux.clone()
image = torch.nn.functional.interpolate(
image[None],
size=[336, 336],
mode="bilinear",
align_corners=False,
)[0]
data_dict["pixel_values"] = image.unsqueeze(0)
# step2 load boxes
bbox= xyxy_to_xywh(bbox)
bbox = pad_boxes(bbox, (ori_w, ori_h))
bbox = resize_boxes(bbox, (pad_w, pad_h), (resize_h, resize_w))
data_dict["gt_boxes"] = torch.tensor(xywh_to_xyxy(bbox)).unsqueeze(0)
# step3 prepare question
total_num_boxes = len(bbox)
obj_tokens = [
DEFAULT_OBJECT_TOKEN.replace("<i>", str(i)) for i in range(total_num_boxes)
]
obj_tokens = (
DEFAULT_OBJECT_FEATURE_TOKEN.join(obj_tokens) + DEFAULT_OBJECT_FEATURE_TOKEN
)
question = question.replace(DEFAULT_IMAGE_TOKEN, "")
question = DEFAULT_IMAGE_TOKEN + "\n" + obj_tokens + "\n" + question
inputs = ""
inputs += self.template["INSTRUCTION"].format(input=question, round=1)
# step4 tokenize question
input_ids = tokenizer_image_object_token(inputs, self.tokenizer)
data_dict["input_ids"] = torch.tensor(input_ids).unsqueeze(0)
return data_dict
ChatRexProcessor.register_for_auto_class() |