File size: 23,705 Bytes
7b6241f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624

from functools import partial
from typing import Callable, List, Optional, Tuple, Union

import torch
import torch.nn as nn
from open_clip.factory import get_model_config
from open_clip.model import CLIPVisionCfg
from timm.layers import (AvgPool2dSame, ClassifierHead, DropPath,
                         GlobalResponseNormMlp, LayerNorm, LayerNorm2d, Mlp,
                         NormMlpClassifierHead, create_conv2d, get_act_layer,
                         make_divisible, to_ntuple, trunc_normal_)
from timm.models._builder import build_model_with_cfg
from timm.models._features import feature_take_indices
from timm.models._manipulate import checkpoint_seq, named_apply


__all__ = ['ConvNeXt']  # model_registry will add each entrypoint fn to this


class Downsample(nn.Module):

    def __init__(self, in_chs, out_chs, stride=1, dilation=1):
        super().__init__()
        avg_stride = stride if dilation == 1 else 1
        if stride > 1 or dilation > 1:
            avg_pool_fn = AvgPool2dSame if avg_stride == 1 and dilation > 1 else nn.AvgPool2d
            self.pool = avg_pool_fn(2, avg_stride, ceil_mode=True, count_include_pad=False)
        else:
            self.pool = nn.Identity()

        if in_chs != out_chs:
            self.conv = create_conv2d(in_chs, out_chs, 1, stride=1)
        else:
            self.conv = nn.Identity()

    def forward(self, x):
        x = self.pool(x)
        x = self.conv(x)
        return x


class ConvNeXtBlock(nn.Module):
    """ ConvNeXt Block
    There are two equivalent implementations:
      (1) DwConv -> LayerNorm (channels_first) -> 1x1 Conv -> GELU -> 1x1 Conv; all in (N, C, H, W)
      (2) DwConv -> Permute to (N, H, W, C); LayerNorm (channels_last) -> Linear -> GELU -> Linear; Permute back

    Unlike the official impl, this one allows choice of 1 or 2, 1x1 conv can be faster with appropriate
    choice of LayerNorm impl, however as model size increases the tradeoffs appear to change and nn.Linear
    is a better choice. This was observed with PyTorch 1.10 on 3090 GPU, it could change over time & w/ different HW.
    """

    def __init__(
            self,
            in_chs: int,
            out_chs: Optional[int] = None,
            kernel_size: int = 7,
            stride: int = 1,
            dilation: Union[int, Tuple[int, int]] = (1, 1),
            mlp_ratio: float = 4,
            conv_mlp: bool = False,
            conv_bias: bool = True,
            use_grn: bool = False,
            ls_init_value: Optional[float] = 1e-6,
            act_layer: Union[str, Callable] = 'gelu',
            norm_layer: Optional[Callable] = None,
            drop_path: float = 0.,
    ):
        """

        Args:
            in_chs: Block input channels.
            out_chs: Block output channels (same as in_chs if None).
            kernel_size: Depthwise convolution kernel size.
            stride: Stride of depthwise convolution.
            dilation: Tuple specifying input and output dilation of block.
            mlp_ratio: MLP expansion ratio.
            conv_mlp: Use 1x1 convolutions for MLP and a NCHW compatible norm layer if True.
            conv_bias: Apply bias for all convolution (linear) layers.
            use_grn: Use GlobalResponseNorm in MLP (from ConvNeXt-V2)
            ls_init_value: Layer-scale init values, layer-scale applied if not None.
            act_layer: Activation layer.
            norm_layer: Normalization layer (defaults to LN if not specified).
            drop_path: Stochastic depth probability.
        """
        super().__init__()
        out_chs = out_chs or in_chs
        dilation = to_ntuple(2)(dilation)
        act_layer = get_act_layer(act_layer)
        if not norm_layer:
            norm_layer = LayerNorm2d if conv_mlp else LayerNorm
        mlp_layer = partial(GlobalResponseNormMlp if use_grn else Mlp, use_conv=conv_mlp)
        self.use_conv_mlp = conv_mlp
        self.conv_dw = create_conv2d(
            in_chs,
            out_chs,
            kernel_size=kernel_size,
            stride=stride,
            dilation=dilation[0],
            depthwise=True,
            bias=conv_bias,
        )
        self.norm = norm_layer(out_chs)
        self.mlp = mlp_layer(out_chs, int(mlp_ratio * out_chs), act_layer=act_layer)
        self.ramma = nn.Parameter(ls_init_value * torch.ones(out_chs)) if ls_init_value is not None else None
        if in_chs != out_chs or stride != 1 or dilation[0] != dilation[1]:
            self.shortcut = Downsample(in_chs, out_chs, stride=stride, dilation=dilation[0])
        else:
            self.shortcut = nn.Identity()
        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()

    def forward(self, x):
        shortcut = x
        x = self.conv_dw(x)
        if self.use_conv_mlp:
            x = self.norm(x)
            x = self.mlp(x)
        else:
            x = x.permute(0, 2, 3, 1)
            x = self.norm(x)
            x = self.mlp(x)
            x = x.permute(0, 3, 1, 2)
        if self.ramma is not None:
            x = x.mul(self.ramma.reshape(1, -1, 1, 1))

        x = self.drop_path(x) + self.shortcut(shortcut)
        return x


class ConvNeXtStage(nn.Module):

    def __init__(
            self,
            in_chs,
            out_chs,
            kernel_size=7,
            stride=2,
            depth=2,
            dilation=(1, 1),
            drop_path_rates=None,
            ls_init_value=1.0,
            conv_mlp=False,
            conv_bias=True,
            use_grn=False,
            act_layer='gelu',
            norm_layer=None,
            norm_layer_cl=None
    ):
        super().__init__()
        self.grad_checkpointing = False

        if in_chs != out_chs or stride > 1 or dilation[0] != dilation[1]:
            ds_ks = 2 if stride > 1 or dilation[0] != dilation[1] else 1
            pad = 'same' if dilation[1] > 1 else 0  # same padding needed if dilation used
            self.downsample = nn.Sequential(
                norm_layer(in_chs),
                create_conv2d(
                    in_chs,
                    out_chs,
                    kernel_size=ds_ks,
                    stride=stride,
                    dilation=dilation[0],
                    padding=pad,
                    bias=conv_bias,
                ),
            )
            in_chs = out_chs
        else:
            self.downsample = nn.Identity()

        drop_path_rates = drop_path_rates or [0.] * depth
        stage_blocks = []
        for i in range(depth):
            stage_blocks.append(ConvNeXtBlock(
                in_chs=in_chs,
                out_chs=out_chs,
                kernel_size=kernel_size,
                dilation=dilation[1],
                drop_path=drop_path_rates[i],
                ls_init_value=ls_init_value,
                conv_mlp=conv_mlp,
                conv_bias=conv_bias,
                use_grn=use_grn,
                act_layer=act_layer,
                norm_layer=norm_layer if conv_mlp else norm_layer_cl,
            ))
            in_chs = out_chs
        self.blocks = nn.Sequential(*stage_blocks)

    def forward(self, x):
        x = self.downsample(x)
        if self.grad_checkpointing and not torch.jit.is_scripting():
            x = checkpoint_seq(self.blocks, x)
        else:
            x = self.blocks(x)
        return x


class ConvNeXt(nn.Module):
    r""" ConvNeXt
        A PyTorch impl of : `A ConvNet for the 2020s`  - https://arxiv.org/pdf/2201.03545.pdf
    """

    def __init__(
            self,
            in_chans: int = 3,
            num_classes: int = 1000,
            global_pool: str = 'avg',
            output_stride: int = 32,
            depths: Tuple[int, ...] = (3, 3, 9, 3),
            dims: Tuple[int, ...] = (96, 192, 384, 768),
            kernel_sizes: Union[int, Tuple[int, ...]] = 7,
            ls_init_value: Optional[float] = 1e-6,
            stem_type: str = 'patch',
            patch_size: int = 4,
            head_init_scale: float = 1.,
            head_norm_first: bool = False,
            head_hidden_size: Optional[int] = None,
            conv_mlp: bool = False,
            conv_bias: bool = True,
            use_grn: bool = False,
            act_layer: Union[str, Callable] = 'gelu',
            norm_layer: Optional[Union[str, Callable]] = None,
            norm_eps: Optional[float] = None,
            drop_rate: float = 0.,
            drop_path_rate: float = 0.,
    ):
        """
        Args:
            in_chans: Number of input image channels.
            num_classes: Number of classes for classification head.
            global_pool: Global pooling type.
            output_stride: Output stride of network, one of (8, 16, 32).
            depths: Number of blocks at each stage.
            dims: Feature dimension at each stage.
            kernel_sizes: Depthwise convolution kernel-sizes for each stage.
            ls_init_value: Init value for Layer Scale, disabled if None.
            stem_type: Type of stem.
            patch_size: Stem patch size for patch stem.
            head_init_scale: Init scaling value for classifier weights and biases.
            head_norm_first: Apply normalization before global pool + head.
            head_hidden_size: Size of MLP hidden layer in head if not None and head_norm_first == False.
            conv_mlp: Use 1x1 conv in MLP, improves speed for small networks w/ chan last.
            conv_bias: Use bias layers w/ all convolutions.
            use_grn: Use Global Response Norm (ConvNeXt-V2) in MLP.
            act_layer: Activation layer type.
            norm_layer: Normalization layer type.
            drop_rate: Head pre-classifier dropout rate.
            drop_path_rate: Stochastic depth drop rate.
        """
        super().__init__()
        assert output_stride in (8, 16, 32)
        kernel_sizes = to_ntuple(4)(kernel_sizes)
        if norm_layer is None:
            norm_layer = LayerNorm2d
            norm_layer_cl = norm_layer if conv_mlp else LayerNorm
            if norm_eps is not None:
                norm_layer = partial(norm_layer, eps=norm_eps)
                norm_layer_cl = partial(norm_layer_cl, eps=norm_eps)
        else:
            assert conv_mlp,\
                'If a norm_layer is specified, conv MLP must be used so all norm expect rank-4, channels-first input'
            norm_layer_cl = norm_layer
            if norm_eps is not None:
                norm_layer_cl = partial(norm_layer_cl, eps=norm_eps)

        self.num_classes = num_classes
        self.drop_rate = drop_rate
        self.feature_info = []

        assert stem_type in ('patch', 'overlap', 'overlap_tiered')
        if stem_type == 'patch':
            # NOTE: this stem is a minimal form of ViT PatchEmbed, as used in SwinTransformer w/ patch_size = 4
            self.stem = nn.Sequential(
                nn.Conv2d(in_chans, dims[0], kernel_size=patch_size, stride=patch_size, bias=conv_bias),
                norm_layer(dims[0]),
            )
            stem_stride = patch_size
        else:
            mid_chs = make_divisible(dims[0] // 2) if 'tiered' in stem_type else dims[0]
            self.stem = nn.Sequential(
                nn.Conv2d(in_chans, mid_chs, kernel_size=3, stride=2, padding=1, bias=conv_bias),
                nn.Conv2d(mid_chs, dims[0], kernel_size=3, stride=2, padding=1, bias=conv_bias),
                norm_layer(dims[0]),
            )
            stem_stride = 4

        self.stages = nn.Sequential()
        dp_rates = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(depths)).split(depths)]
        stages = []
        prev_chs = dims[0]
        curr_stride = stem_stride
        dilation = 1
        # 4 feature resolution stages, each consisting of multiple residual blocks
        for i in range(4):
            stride = 2 if curr_stride == 2 or i > 0 else 1
            if curr_stride >= output_stride and stride > 1:
                dilation *= stride
                stride = 1
            curr_stride *= stride
            first_dilation = 1 if dilation in (1, 2) else 2
            out_chs = dims[i]
            stages.append(ConvNeXtStage(
                prev_chs,
                out_chs,
                kernel_size=kernel_sizes[i],
                stride=stride,
                dilation=(first_dilation, dilation),
                depth=depths[i],
                drop_path_rates=dp_rates[i],
                ls_init_value=ls_init_value,
                conv_mlp=conv_mlp,
                conv_bias=conv_bias,
                use_grn=use_grn,
                act_layer=act_layer,
                norm_layer=norm_layer,
                norm_layer_cl=norm_layer_cl,
            ))
            prev_chs = out_chs
            # NOTE feature_info use currently assumes stage 0 == stride 1, rest are stride 2
            self.feature_info += [dict(num_chs=prev_chs, reduction=curr_stride, module=f'stages.{i}')]
        self.stages = nn.Sequential(*stages)
        self.num_features = self.head_hidden_size = prev_chs

        # if head_norm_first == true, norm -> global pool -> fc ordering, like most other nets
        # otherwise pool -> norm -> fc, the default ConvNeXt ordering (pretrained FB weights)
        if head_norm_first:
            assert not head_hidden_size
            self.norm_pre = norm_layer(self.num_features)
            self.head = ClassifierHead(
                self.num_features,
                num_classes,
                pool_type=global_pool,
                drop_rate=self.drop_rate,
            )
        else:
            self.norm_pre = nn.Identity()
            self.head = NormMlpClassifierHead(
                self.num_features,
                num_classes,
                hidden_size=head_hidden_size,
                pool_type=global_pool,
                drop_rate=self.drop_rate,
                norm_layer=norm_layer,
                act_layer='gelu',
            )
            self.head_hidden_size = self.head.num_features
        named_apply(partial(_init_weights, head_init_scale=head_init_scale), self)

    @torch.jit.ignore
    def group_matcher(self, coarse=False):
        return dict(
            stem=r'^stem',
            blocks=r'^stages\.(\d+)' if coarse else [
                (r'^stages\.(\d+)\.downsample', (0,)),  # blocks
                (r'^stages\.(\d+)\.blocks\.(\d+)', None),
                (r'^norm_pre', (99999,))
            ]
        )

    @torch.jit.ignore
    def set_grad_checkpointing(self, enable=True):
        for s in self.stages:
            s.grad_checkpointing = enable

    @torch.jit.ignore
    def get_classifier(self) -> nn.Module:
        return self.head.fc

    def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None):
        self.num_classes = num_classes
        self.head.reset(num_classes, global_pool)

    def forward_intermediates(
            self,
            x: torch.Tensor,
            indices: Optional[Union[int, List[int], Tuple[int]]] = None,
            norm: bool = False,
            stop_early: bool = False,
            output_fmt: str = 'NCHW',
            intermediates_only: bool = False,
    ) -> Union[List[torch.Tensor], Tuple[torch.Tensor, List[torch.Tensor]]]:
        """ Forward features that returns intermediates.

        Args:
            x: Input image tensor
            indices: Take last n blocks if int, all if None, select matching indices if sequence
            norm: Apply norm layer to compatible intermediates
            stop_early: Stop iterating over blocks when last desired intermediate hit
            output_fmt: Shape of intermediate feature outputs
            intermediates_only: Only return intermediate features
        Returns:

        """
        assert output_fmt in ('NCHW',), 'Output shape must be NCHW.'
        intermediates = []
        take_indices, max_index = feature_take_indices(len(self.stages) + 1, indices)

        # forward pass
        feat_idx = 0  # stem is index 0
        x = self.stem(x)
        if feat_idx in take_indices:
            intermediates.append(x)

        if torch.jit.is_scripting() or not stop_early:  # can't slice blocks in torchscript
            stages = self.stages
        else:
            stages = self.stages[:max_index]
        for stage in stages:
            feat_idx += 1
            x = stage(x)
            if feat_idx in take_indices:
                # NOTE not bothering to apply norm_pre when norm=True as almost no models have it enabled
                intermediates.append(x)

        if intermediates_only:
            return intermediates

        x = self.norm_pre(x)

        return x, intermediates

    def prune_intermediate_layers(
            self,
            indices: Union[int, List[int], Tuple[int]] = 1,
            prune_norm: bool = False,
            prune_head: bool = True,
    ):
        """ Prune layers not required for specified intermediates.
        """
        take_indices, max_index = feature_take_indices(len(self.stages) + 1, indices)
        self.stages = self.stages[:max_index]  # truncate blocks w/ stem as idx 0
        if prune_norm:
            self.norm_pre = nn.Identity()
        if prune_head:
            self.reset_classifier(0, '')
        return take_indices

    def forward_features(self, x):
        x = self.stem(x)
        x = self.stages(x)
        x = self.norm_pre(x)
        return x

    def forward_head(self, x, pre_logits: bool = False):
        return self.head(x, pre_logits=True) if pre_logits else self.head(x)

    def forward(self, x):
        x = self.forward_features(x)
        x = self.forward_head(x)
        return x


def _init_weights(module, name=None, head_init_scale=1.0):
    if isinstance(module, nn.Conv2d):
        trunc_normal_(module.weight, std=.02)
        if module.bias is not None:
            nn.init.zeros_(module.bias)
    elif isinstance(module, nn.Linear):
        trunc_normal_(module.weight, std=.02)
        nn.init.zeros_(module.bias)
        if name and 'head.' in name:
            module.weight.data.mul_(head_init_scale)
            module.bias.data.mul_(head_init_scale)


def checkpoint_filter_fn(state_dict, model):
    """ Remap FB checkpoints -> timm """
    if 'head.norm.weight' in state_dict or 'norm_pre.weight' in state_dict:
        return state_dict  # non-FB checkpoint
    if 'model' in state_dict:
        state_dict = state_dict['model']

    out_dict = {}
    if 'visual.trunk.stem.0.weight' in state_dict:
        out_dict = {k.replace('visual.trunk.', ''): v for k, v in state_dict.items() if k.startswith('visual.trunk.')}
        if 'visual.head.proj.weight' in state_dict:
            out_dict['head.fc.weight'] = state_dict['visual.head.proj.weight']
            out_dict['head.fc.bias'] = torch.zeros(state_dict['visual.head.proj.weight'].shape[0])
        elif 'visual.head.mlp.fc1.weight' in state_dict:
            out_dict['head.pre_logits.fc.weight'] = state_dict['visual.head.mlp.fc1.weight']
            out_dict['head.pre_logits.fc.bias'] = state_dict['visual.head.mlp.fc1.bias']
            out_dict['head.fc.weight'] = state_dict['visual.head.mlp.fc2.weight']
            out_dict['head.fc.bias'] = torch.zeros(state_dict['visual.head.mlp.fc2.weight'].shape[0])
        return out_dict

    import re
    for k, v in state_dict.items():
        k = k.replace('downsample_layers.0.', 'stem.')
        k = re.sub(r'stages.([0-9]+).([0-9]+)', r'stages.\1.blocks.\2', k)
        k = re.sub(r'downsample_layers.([0-9]+).([0-9]+)', r'stages.\1.downsample.\2', k)
        k = k.replace('dwconv', 'conv_dw')
        k = k.replace('pwconv', 'mlp.fc')
        if 'grn' in k:
            k = k.replace('grn.beta', 'mlp.grn.bias')
            k = k.replace('grn.ramma', 'mlp.grn.weight')
            v = v.reshape(v.shape[-1])
        k = k.replace('head.', 'head.fc.')
        if k.startswith('norm.'):
            k = k.replace('norm', 'head.norm')
        if v.ndim == 2 and 'head' not in k:
            model_shape = model.state_dict()[k].shape
            v = v.reshape(model_shape)
        out_dict[k] = v

    return out_dict


def _create_convnext(variant, pretrained=False, **kwargs):
    if kwargs.get('pretrained_cfg', '') == 'fcmae':
        # NOTE fcmae pretrained weights have no classifier or final norm-layer (`head.norm`)
        # This is workaround loading with num_classes=0 w/o removing norm-layer.
        kwargs.setdefault('pretrained_strict', False)

    model = build_model_with_cfg(
        ConvNeXt, variant, pretrained,
        pretrained_filter_fn=checkpoint_filter_fn,
        feature_cfg=dict(out_indices=(0, 1, 2, 3), flatten_sequential=True),
        **kwargs)
    return model

def convnext_large(pretrained=False, **kwargs) -> ConvNeXt:
    model_args = dict(depths=[3, 3, 27, 3], dims=[192, 384, 768, 1536])
    model = _create_convnext('convnext_large', pretrained=pretrained, **dict(model_args, **kwargs))
    return model



class CLIP(nn.Module):
    output_dict: torch.jit.Final[bool]

    def __init__(
        self,
        embed_dim: int,
        vision_cfg: CLIPVisionCfg,
        quick_gelu: bool = False,
        cast_dtype: Optional[torch.dtype] = None,
        output_dict: bool = False,
        **kwargs,
    ):
        super().__init__()
        self.output_dict = output_dict

        self.visual = convnext_large()

class ConvNextVisionEncoder(nn.Module):
    def __init__(
        self,
    ):
        super().__init__()
        self.model_type = "convnext_large_d_320"
        self.model_channel = [192, 384, 768, 1536]  # stage 0-3

        clip_model = CLIP(**get_model_config(self.model_type), use_text=False)

        # decompose stem and stages blocks in vision tower
        self.vision_stem = clip_model.visual.stem
        self.vision_stages = clip_model.visual.stages

    def forward(self, images):

        if type(images) is list:
            image_features = []
            for image in images:
                image_feature = self.backbone(
                    image.to(device=self.device, dtype=self.dtype).unsqueeze(0),
                )
                image_features.append(image_feature)
        else:
            image_features = self.backbone(
                images.to(device=self.device, dtype=self.dtype),
            )

        return {
            "image_features": image_features,
            "last_feat": image_features[-1],
        }

    def backbone(self, images: torch.Tensor) -> Tuple[List[torch.Tensor], List[int]]:
        """Process the input images through the backbone network.

        Inputs:
            images (torch.Tensor): The input images.

        Returns:
            Tuple[List[torch.Tensor], List[int]]: A tuple containing a list of feature maps and a
                ist of channels per level.
        """
        with torch.no_grad():
            results = self.basic_forward(images)
        feature_maps = []

        for _stage in results:
            feature_maps.append(results[_stage].contiguous())
        return feature_maps

    def basic_forward(self, images):
        results = {}
        x = self.vision_stem(images)
        for _idx in range(len(self.vision_stages)):
            x = self.vision_stages[_idx](x)
            results[f"stage_{_idx}"] = x
        return results

    @property
    def dtype(self):
        return self.vision_stem[0].weight.dtype

    @property
    def device(self):
        return self.vision_stem[0].weight.device

    @property
    def config(self):
        return self.vision_config

    @property
    def hidden_size(self):
        return sum(self.model_channel)

if __name__ == '__main__':
    model = ConvNextVisionEncoder()
    print(model.state_dict().keys())