File size: 33,463 Bytes
7b6241f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 |
import json
import logging
import math
import os
from pathlib import Path
from typing import Any, Dict, List, Optional, Tuple, Union
import torch
import torch.nn as nn
import torch.nn.functional as F
from open_clip.factory import get_model_config, load_state_dict
from open_clip.model import (CLIPTextCfg, CLIPVisionCfg, _build_text_tower,
_build_vision_tower,
convert_to_custom_text_state_dict)
from open_clip.transformer import text_global_pool
from torch import nn
from torchvision.ops import roi_align
from transformers import (CONFIG_MAPPING, AutoConfig, AutoModel,
AutoModelForCausalLM, GenerationConfig,
PretrainedConfig, PreTrainedModel, StoppingCriteria,
StoppingCriteriaList)
from transformers.activations import ACT2FN
from transformers.configuration_utils import PretrainedConfig
from transformers.generation import GenerationConfig
from transformers.modeling_utils import load_state_dict
from transformers.utils import logging, strtobool
from .convnext import ConvNextVisionEncoder
logger = logging.get_logger(__name__)
XLA_USE_BF16 = os.environ.get("XLA_USE_BF16", "0").upper()
XLA_DOWNCAST_BF16 = os.environ.get("XLA_DOWNCAST_BF16", "0").upper()
IGNORE_INDEX = -100
DEFAULT_PAD_TOKEN_INDEX = 0
IMAGE_TOKEN_INDEX = -200
DEFAULT_IMAGE_TOKEN = "<image>"
# For Objects
DEFAULT_OBJECT_TOKEN = "<obj<i>>"
DEFAULT_OBJECT_FEATURE_TOKEN = "<objfeat>"
DEFAULT_OBJECT_INDEX = -300
# For Grounding
DEFAULT_GROUNDING_START = "<ground>"
DEFAULT_GROUNDING_END = "</ground>"
DEFAULT_GROUNDING_OBJECTS_START = "<objects>"
DEFAULT_GROUNDING_OBJECTS_END = "</objects>"
def is_fsdp_enabled():
return (
torch.distributed.is_available()
and torch.distributed.is_initialized()
and strtobool(os.environ.get("ACCELERATE_USE_FSDP", "False")) == 1
and strtobool(os.environ.get("FSDP_CPU_RAM_EFFICIENT_LOADING", "False")) == 1
)
def get_token_slices(input_ids: torch.Tensor):
"""
Get slices of tokens based on special markers in the input tensor.
Args:
input_ids (torch.Tensor): A tensor of token IDs where IMAGE_TOKEN_INDEX represents an image token,
DEFAULT_OBJECT_INDEX represents an object token, and all other values represent text tokens.
Returns:
List[Dict[str, Any]]: A list of dictionaries where each dictionary contains the type of the
token slice ('text', 'image', 'object') and the span as a list of start and end indices.
"""
# define type markers and corresponding types
type_map = {IMAGE_TOKEN_INDEX: "image", DEFAULT_OBJECT_INDEX: "object"}
# find the positions of special markers
image_indices = torch.where(input_ids == IMAGE_TOKEN_INDEX)[0]
object_indices = torch.where(input_ids == DEFAULT_OBJECT_INDEX)[0]
if len(object_indices) > 0:
has_object = True
else:
has_object = False
# merge all the positions of special markers
special_indices = torch.cat((image_indices, object_indices))
special_indices, _ = torch.sort(special_indices)
special_tokens = input_ids[special_indices]
slices = []
start_idx = 0
for i, idx in enumerate(special_indices):
if start_idx < idx:
slices.append({"type": "text", "span": [start_idx, idx.item()]})
token_type = type_map[special_tokens[i].item()]
slices.append({"type": token_type, "span": [idx.item(), idx.item() + 1]})
start_idx = idx.item() + 1
if start_idx < len(input_ids):
slices.append({"type": "text", "span": [start_idx, len(input_ids)]})
return slices, has_object
def prepare_inputs_labels_for_multimodal(
llm,
input_ids: torch.LongTensor = None,
position_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
labels: Optional[torch.LongTensor] = None,
pixel_values: Optional[torch.FloatTensor] = None,
bbox_feats=None,
extra_llm_input_embed: nn.Embedding = None,
**kwargs,
):
if pixel_values is None:
return {
"input_ids": input_ids,
"position_ids": position_ids,
"attention_mask": attention_mask,
"past_key_values": past_key_values,
"inputs_embeds": None,
"labels": labels,
}
_labels = labels
_position_ids = position_ids
_attention_mask = attention_mask
if attention_mask is None:
attention_mask = torch.ones_like(input_ids, dtype=torch.bool)
else:
attention_mask = attention_mask.bool()
if position_ids is None:
position_ids = torch.arange(
0, input_ids.shape[1], dtype=torch.long, device=input_ids.device
)
if labels is None:
labels = torch.full_like(input_ids, IGNORE_INDEX)
# remove the padding using attention_mask -- TODO: double check
input_ids = [
cur_input_ids[cur_attention_mask]
for cur_input_ids, cur_attention_mask in zip(input_ids, attention_mask)
]
labels = [
cur_labels[cur_attention_mask]
for cur_labels, cur_attention_mask in zip(labels, attention_mask)
]
new_inputs_embeds = []
new_labels = []
cur_image_idx = 0
cur_object_idx = 0
for batch_idx, cur_input_ids in enumerate(input_ids):
num_images = (cur_input_ids == IMAGE_TOKEN_INDEX).sum()
if num_images == 0:
cur_pixel_values = pixel_values[cur_image_idx]
cur_inputs_embeds_1 = llm.get_input_embeddings()(cur_input_ids)
cur_inputs_embeds = torch.cat(
[cur_inputs_embeds_1, cur_pixel_values[0:0]], dim=0
)
new_inputs_embeds.append(cur_inputs_embeds)
new_labels.append(labels[batch_idx])
cur_image_idx += 1
cur_object_idx += 1
continue
cur_labels = labels[batch_idx]
token_slices, has_object = get_token_slices(cur_input_ids)
result_input_embeddings = []
result_output_labels = []
cur_gt_bnox_indice = 0
for slice in token_slices:
slice_type = slice["type"]
slice_span = slice["span"]
if slice_type == "text":
cur_input_ids_noim = cur_input_ids[slice_span[0] : slice_span[1]]
cur_labels_noim = cur_labels[slice_span[0] : slice_span[1]]
cur_input_embeds = llm.get_input_embeddings()(cur_input_ids_noim)
result_input_embeddings.append(cur_input_embeds)
result_output_labels.append(cur_labels_noim)
elif slice_type == "image":
cur_input_embeds = pixel_values[cur_image_idx]
result_input_embeddings.append(cur_input_embeds)
result_output_labels.append(
torch.full(
(cur_input_embeds.shape[0],),
IGNORE_INDEX,
device=cur_labels.device,
dtype=cur_labels.dtype,
)
)
cur_image_idx += 1
elif slice_type == "object":
try:
result_input_embeddings.append(
bbox_feats[cur_object_idx][cur_gt_bnox_indice].unsqueeze(0)
)
except:
raise ValueError(
f"current boxe_feats.shape: {bbox_feats[cur_object_idx].shape}, "
)
cur_gt_bnox_indice += 1
result_output_labels.append(
torch.full(
(1,),
IGNORE_INDEX,
device=cur_labels.device,
dtype=cur_labels.dtype,
)
)
cur_object_idx += 1
result_input_embeddings = torch.cat(result_input_embeddings)
result_output_labels = torch.cat(result_output_labels)
assert len(result_output_labels) == len(result_input_embeddings)
new_inputs_embeds.append(result_input_embeddings)
new_labels.append(result_output_labels)
# Combine them
max_len = max(x.shape[0] for x in new_inputs_embeds)
batch_size = len(new_inputs_embeds)
new_inputs_embeds_padded = []
new_labels_padded = torch.full(
(batch_size, max_len),
IGNORE_INDEX,
dtype=new_labels[0].dtype,
device=new_labels[0].device,
)
attention_mask = torch.zeros(
(batch_size, max_len), dtype=attention_mask.dtype, device=attention_mask.device
)
position_ids = torch.zeros(
(batch_size, max_len), dtype=position_ids.dtype, device=position_ids.device
)
for i, (cur_new_embed, cur_new_labels) in enumerate(
zip(new_inputs_embeds, new_labels)
):
cur_len = cur_new_embed.shape[0]
new_inputs_embeds_padded.append(
torch.cat(
(
cur_new_embed,
torch.zeros(
(max_len - cur_len, cur_new_embed.shape[1]),
dtype=cur_new_embed.dtype,
device=cur_new_embed.device,
),
),
dim=0,
)
)
if cur_len > 0:
new_labels_padded[i, :cur_len] = cur_new_labels
attention_mask[i, :cur_len] = True
position_ids[i, :cur_len] = torch.arange(
0, cur_len, dtype=position_ids.dtype, device=position_ids.device
)
new_inputs_embeds = torch.stack(new_inputs_embeds_padded, dim=0)
if _labels is None:
new_labels = None
else:
new_labels = new_labels_padded
if _attention_mask is None:
attention_mask = None
else:
attention_mask = attention_mask.to(dtype=_attention_mask.dtype)
if _position_ids is None:
position_ids = None
return {
"input_ids": None,
"position_ids": position_ids,
"attention_mask": attention_mask,
"past_key_values": past_key_values,
"inputs_embeds": new_inputs_embeds,
"labels": new_labels,
}
class StopWordStoppingCriteria(StoppingCriteria):
"""StopWord stopping criteria."""
def __init__(self, tokenizer, stop_word):
self.tokenizer = tokenizer
self.stop_word = stop_word
self.length = len(self.stop_word)
def __call__(self, input_ids, *args, **kwargs) -> bool:
cur_text = self.tokenizer.decode(input_ids[0])
cur_text = cur_text.replace('\r', '').replace('\n', '')
return cur_text[-self.length:] == self.stop_word
def get_stop_criteria(
tokenizer,
stop_words=[],
):
stop_criteria = StoppingCriteriaList()
for word in stop_words:
stop_criteria.append(StopWordStoppingCriteria(tokenizer, word))
return stop_criteria
class DualPathFuseModule(nn.Module):
# change channel+gate+sum
def __init__(self, low_res_dim, high_res_dim, zero_init=True):
super().__init__()
self.slow_conv = nn.Conv2d(high_res_dim, high_res_dim, 1)
self.slow_proj = nn.Conv2d(high_res_dim, low_res_dim, 1)
self.fast_conv = nn.Conv2d(
low_res_dim, low_res_dim, 7, padding=3, groups=low_res_dim
)
self.fast_proj = nn.Conv2d(low_res_dim, low_res_dim, 1)
self.gate = nn.Sequential(
nn.Linear(low_res_dim * 2, low_res_dim // 2),
nn.GELU(),
nn.Linear(low_res_dim // 2, 1),
)
nn.init.xavier_uniform_(self.slow_conv.weight)
nn.init.xavier_uniform_(self.fast_conv.weight)
nn.init.zeros_(self.slow_conv.bias)
nn.init.zeros_(self.fast_conv.bias)
if zero_init:
nn.init.zeros_(self.slow_proj.weight)
nn.init.zeros_(self.fast_proj.weight)
else:
nn.init.xavier_uniform_(self.slow_proj.weight)
nn.init.xavier_uniform_(self.fast_proj.weight)
nn.init.zeros_(self.slow_proj.bias)
nn.init.zeros_(self.fast_proj.bias)
def forward(self, low_res_feat, high_res_feat, sampler=None):
b, c, h, w = high_res_feat.shape # (2, 1536, 24, 24)
_, _, d = low_res_feat.shape # (2, 576, 1024)
high_res_feat = self.slow_proj(
F.gelu(self.slow_conv(high_res_feat))
) # (2, 1024, 24, 24)
high_res_feat = high_res_feat.view(b, d, -1).transpose(1, 2) # (2, 576, 1024)
dst_size = int(math.sqrt(low_res_feat.shape[1])) # 24
low_res_feat = low_res_feat.transpose(1, 2).view(
b, d, dst_size, dst_size
) # (2, 1024, 24, 24)
low_res_feat = low_res_feat + self.fast_proj(
F.gelu(self.fast_conv(low_res_feat))
)
low_res_feat = low_res_feat.view(b, d, dst_size * dst_size).transpose(
1, 2
) # (2, 576, 1024)
gate = self.gate(
torch.cat([low_res_feat, high_res_feat], -1).mean(1)
).unsqueeze(
1
) # (2, 1, 1)
low_res_feat = low_res_feat + high_res_feat * gate.tanh()
return low_res_feat
class ProjectorConfig(PretrainedConfig):
model_type = "projector"
_auto_class = "AutoConfig"
def __init__(
self,
visual_hidden_size=4096,
llm_hidden_size=4096,
depth=2,
hidden_act="gelu",
bias=True,
**kwargs,
):
self.visual_hidden_size = visual_hidden_size
self.llm_hidden_size = llm_hidden_size
self.depth = depth
self.hidden_act = hidden_act
self.bias = bias
super().__init__(**kwargs)
class ProjectorModel(PreTrainedModel):
_auto_class = "AutoModel"
config_class = ProjectorConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = []
def __init__(self, config: ProjectorConfig) -> None:
super().__init__(config)
self.gradient_checkpointing = False
modules = [
nn.Linear(
config.visual_hidden_size, config.llm_hidden_size, bias=config.bias
)
]
for _ in range(1, config.depth):
modules.append(ACT2FN[config.hidden_act])
modules.append(
nn.Linear(
config.llm_hidden_size, config.llm_hidden_size, bias=config.bias
)
)
self.model = nn.Sequential(*modules)
def enable_input_require_grads(self):
def make_inputs_require_grad(module, input, output):
output.requires_grad_(True)
self.model.register_forward_hook(make_inputs_require_grad)
def _set_gradient_checkpointing(self, module, value=False):
if isinstance(module, ProjectorModel):
module.gradient_checkpointing = value
def forward(self, x):
layer_outputs = self.model(x)
return layer_outputs
def gen_sineembed_for_position(pos_tensor, dim_of_pos_feats):
"""Generate sine position embedding from a position tensor.
Args:
pos_tensor (torch.Tensor): shape: [batch_size, N, 4]. the last dimension is [cx, cy, w, h] in
normalized coordinates in range [0, 1].
out_dim (int): the output dimension of the position embedding.
Returns:
pos (torch.Tensor): shape: [batch_size, N, out_dim].
"""
scale = 2 * math.pi
dim_t = torch.arange(
dim_of_pos_feats, dtype=torch.float32, device=pos_tensor.device
)
dim_t = 10000 ** (2 * (dim_t // 2) / dim_of_pos_feats)
x_embed = pos_tensor[:, :, 0] * scale
y_embed = pos_tensor[:, :, 1] * scale
pos_x = x_embed[:, :, None] / dim_t
pos_y = y_embed[:, :, None] / dim_t
pos_x = torch.stack(
(pos_x[:, :, 0::2].sin(), pos_x[:, :, 1::2].cos()), dim=3
).flatten(2)
pos_y = torch.stack(
(pos_y[:, :, 0::2].sin(), pos_y[:, :, 1::2].cos()), dim=3
).flatten(2)
if pos_tensor.size(-1) == 2:
pos = torch.cat((pos_y, pos_x), dim=2)
elif pos_tensor.size(-1) == 4:
w_embed = pos_tensor[:, :, 2] * scale
pos_w = w_embed[:, :, None] / dim_t
pos_w = torch.stack(
(pos_w[:, :, 0::2].sin(), pos_w[:, :, 1::2].cos()), dim=3
).flatten(2)
h_embed = pos_tensor[:, :, 3] * scale
pos_h = h_embed[:, :, None] / dim_t
pos_h = torch.stack(
(pos_h[:, :, 0::2].sin(), pos_h[:, :, 1::2].cos()), dim=3
).flatten(2)
pos = torch.cat((pos_y, pos_x, pos_w, pos_h), dim=2)
else:
raise ValueError("Unknown pos_tensor shape(-1):{}".format(pos_tensor.size(-1)))
return pos
class MultiLevelROIVisualPrompt(nn.Module):
"""Initialize the MultiLevelROIVisualPrompt.
Args:
output_size (Optional[int]): The size of the output. Default is None.
channel_per_level (List[int]): List of channels per level. Default is [192, 384, 768, 1536].
spatial_scale (Optional[float]): The spatial scale factor. Default is None.
with_additional_projection (bool): Whether to use additional projection. Default is False.
visual_prompt_hidden_size (int): The hidden size of the visual prompt. Default is 1024.
add_pos_embedding (bool): Whether to add position embedding. Default is False.
pos_embedding_dim (int): The dimension of the position embedding. Default is 1024.
"""
def __init__(
self,
output_size: int = None,
channel_per_level: List[int] = [192, 384, 768, 1536],
spatail_scale: float = None,
visual_prompt_hidden_size: bool = 1024,
add_pos_embedding: bool = False,
pos_embedding_dim: int = 1024,
):
super(MultiLevelROIVisualPrompt, self).__init__()
self.output_size = output_size
self.channel_per_level = channel_per_level
self.spatail_scale = spatail_scale
self.add_pos_embedding = add_pos_embedding
self.pos_embedding_dim = pos_embedding_dim
def __call__(
self,
multi_level_features: List[torch.Tensor],
boxes: Union[torch.Tensor, List[torch.Tensor]],
) -> torch.Tensor:
"""Performs Region of Interest (RoI) Align operator on multi-level features. The RoI
feature on each scale will go through a different linear layer for projection. Different
RoI features will be summed up and then average pooled.
Args:
multi_level_features (Listp[Tensor[N, C, H, W]]): Feature maps from different levels
boxes (Tensor[K, 5] or List[Tensor[L, 4]]): the box coordinates in (x1, y1, x2, y2)
format where the regions will be taken from.
Returns:
Tensor[1, K, C]: The output tensor that has the shape KxC, where K is the number of RoIs
"""
boxes[0] = boxes[0].float()
concat_multi_level_feature = []
max_height = max([feature.shape[2] for feature in multi_level_features])
max_width = max([feature.shape[3] for feature in multi_level_features])
# interpolate to the same size
for level, feature in enumerate(multi_level_features):
if level != 0:
concat_multi_level_feature.append(
F.interpolate(
feature.float(),
size=(max_height, max_width),
mode="bilinear",
align_corners=False,
)
)
else:
concat_multi_level_feature.append(feature.float())
concat_multi_level_feature = torch.cat(concat_multi_level_feature, dim=1)
out_box_feat = roi_align(
concat_multi_level_feature,
boxes,
output_size=self.output_size,
spatial_scale=self.spatail_scale,
)
# Average Pooling -> n,c -> 1,n,c
out_box_feat = out_box_feat.mean(dim=(2, 3)).reshape(
1, out_box_feat.shape[0], out_box_feat.shape[1]
)
if self.add_pos_embedding:
# note that this boxes is in xyxy, unormalized format, so we need to normalize it first
boxes = boxes[0] # (N, 4)
boxes = boxes.to(out_box_feat.dtype)
original_img_width = max_width / self.spatail_scale
original_img_height = max_height / self.spatail_scale
boxes[:, [0, 2]] = boxes[:, [0, 2]] / original_img_width
boxes[:, [1, 3]] = boxes[:, [1, 3]] / original_img_height
# convert from xyxy to cx, cy, w, h
boxes[:, 2] = boxes[:, 2] - boxes[:, 0]
boxes[:, 3] = boxes[:, 3] - boxes[:, 1]
boxes[:, 0] = boxes[:, 0] + boxes[:, 2] / 2
boxes[:, 1] = boxes[:, 1] + boxes[:, 3] / 2
pos_embed = gen_sineembed_for_position(
boxes.unsqueeze(0), self.pos_embedding_dim // 4
)
out_box_feat = out_box_feat + pos_embed
return out_box_feat
class ChatRexAuxConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of ChatRexAux model.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vision_config (`Union[AutoConfig, dict]`, *optional*, defaults to `CLIPVisionConfig`):
The config object or dictionary of the vision backbone.
vision_aux_config (`Union[AutoConfig, dict]`, *optional*, defaults to `OpenCLIPVisionTower`):
visual_prompt_encoder (`Union[AutoConfig, dict]`, *optional*, defaults to `MultiLevelROIVisualPrompt`):
text_config (`Union[AutoConfig, dict]`, *optional*, defaults to `LlamaConfig`):
The config object or dictionary of the text backbone.
ignore_index (`int`, *optional*, defaults to -100):
The ignore index for the loss function.
image_token_index (`int`, *optional*, defaults to 32000):
The image token index to encode the image prompt.
projector_hidden_act (`str`, *optional*, defaults to `"gelu"`):
The activation function used by the multimodal projector.
vision_feature_select_strategy (`str`, *optional*, defaults to `"default"`):
The feature selection strategy used to select the vision feature from the vision backbone.
Can be one of `"default"` or `"full"`.
vision_feature_layer (`int`, *optional*, defaults to -2):
The index of the layer to select the vision feature.
Example:
```python
>>> from transformers import LlavaForConditionalGeneration, LlavaConfig, CLIPVisionConfig, LlamaConfig
>>> # Initializing a CLIP-vision config
>>> vision_config = CLIPVisionConfig()
>>> # Initializing a Llama config
>>> text_config = LlamaConfig()
>>> # Initializing a Llava llava-1.5-7b style configuration
>>> configuration = LlavaConfig(vision_config, text_config)
>>> # Initializing a model from the llava-1.5-7b style configuration
>>> model = LlavaForConditionalGeneration(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "chatrex"
is_composition = False
def __init__(
self,
vision_config=None,
vision_aux_config=None,
visual_prompt_encoder_config=None,
text_config=None,
ignore_index=-100,
image_token_index=32000,
projector_hidden_act="gelu",
vision_feature_select_strategy="default",
vision_feature_layer=-2,
projector_depth=2,
visual_prompt_hidden_size=2880,
**kwargs,
):
self.ignore_index = ignore_index
self.image_token_index = image_token_index
self.projector_hidden_act = projector_hidden_act
self.projector_depth = projector_depth
self.visual_prompt_hidden_size = visual_prompt_hidden_size
self.visual_prompt_encoder_config = visual_prompt_encoder_config
if vision_feature_select_strategy not in ["default", "full"]:
raise ValueError(
"vision_feature_select_strategy should be one of 'default', 'full'."
f"Got: {vision_feature_select_strategy}"
)
self.vision_feature_select_strategy = vision_feature_select_strategy
self.vision_feature_layer = vision_feature_layer
if isinstance(vision_config, dict):
vision_config["model_type"] = (
vision_config["model_type"]
if "model_type" in vision_config
else "clip_vision_model"
)
vision_config = CONFIG_MAPPING[vision_config["model_type"]](**vision_config)
elif vision_config is None:
vision_config = CONFIG_MAPPING["clip_vision_model"](
intermediate_size=4096,
hidden_size=1024,
patch_size=14,
image_size=336,
num_hidden_layers=24,
num_attention_heads=16,
vocab_size=32000,
projection_dim=768,
)
self.vision_config = vision_config
self.vision_aux_config = vision_aux_config
if isinstance(text_config, dict):
text_config["model_type"] = (
text_config["model_type"] if "model_type" in text_config else "llama"
)
text_config = CONFIG_MAPPING[text_config["model_type"]](**text_config)
elif text_config is None:
text_config = CONFIG_MAPPING["llama"]()
self.text_config = text_config
super().__init__(**kwargs)
class ChatRexAuxPreTrainedModel(PreTrainedModel):
config_class = ChatRexAuxConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["LlavaVisionAttention"]
_skip_keys_device_placement = "past_key_values"
_supports_flash_attn_2 = True
_supports_cache_class = True
# def _init_weights(self, module):
# # important: this ported version of Llava isn't meant for training from scratch - only
# # inference and fine-tuning - so the proper init weights code has been removed - the original codebase
# # https://github.com/haotian-liu/LLaVA/tree/main/llava should serve for that purpose
# std = (
# self.config.initializer_range
# if hasattr(self.config, "initializer_range")
# else self.config.text_config.initializer_range
# )
# if hasattr(module, "class_embedding"):
# module.class_embedding.data.normal_(mean=0.0, std=std)
# if isinstance(module, (nn.Linear, nn.Conv2d)):
# module.weight.data.normal_(mean=0.0, std=std)
# if module.bias is not None:
# module.bias.data.zero_()
# elif isinstance(module, nn.Embedding):
# module.weight.data.normal_(mean=0.0, std=std)
# if module.padding_idx is not None:
# module.weight.data[module.padding_idx].zero_()
@property
def _supports_sdpa(self):
"""
Retrieve language_model's attribute to check whether the model supports
SDPA or not.
"""
return self.language_model._supports_sdpa
class ChatRexAuxForConditionalGeneration(ChatRexAuxPreTrainedModel):
def __init__(self, config: ChatRexAuxConfig):
super().__init__(config)
# low resolusion vision encoder
self.vision_encoder = AutoModel.from_config(config.vision_config)
# high resolusion vision encoder
self.vision_encoder_aux = ConvNextVisionEncoder()
# vision projector
projector_config = ProjectorConfig(
visual_hidden_size=config.vision_config.hidden_size,
llm_hidden_size=config.text_config.hidden_size,
depth=config.projector_depth,
)
self.projector = ProjectorModel(projector_config)
# visual prompt encoder
vp_projector_config = ProjectorConfig(
visual_hidden_size=config.visual_prompt_hidden_size,
llm_hidden_size=config.text_config.hidden_size,
depth=config.projector_depth,
)
self.vp_projector = ProjectorModel(vp_projector_config)
# fuser
self.fuser = DualPathFuseModule(
low_res_dim=config.vision_config.hidden_size,
high_res_dim=1536,
)
# visual prompt encoder
self.vp_encoder = MultiLevelROIVisualPrompt(
output_size=7,
channel_per_level=[192, 384, 768, 1536],
spatail_scale=192 / 768,
add_pos_embedding=True,
pos_embedding_dim=2880,
)
# genconfig
self.gen_config = None
self.vocab_size = config.text_config.vocab_size
self.llm = AutoModelForCausalLM.from_config(
config.text_config, attn_implementation=config._attn_implementation
)
self.pad_token_id = (
self.config.pad_token_id if self.config.pad_token_id is not None else -1
)
self.post_init()
def _prepare_data_for_llm(self, data):
if "pixel_values" in data:
visual_outputs = self.vision_encoder(
data["pixel_values"].to(self.vision_encoder.dtype),
output_hidden_states=True,
)
if type(self.vision_encoder).__name__ in [
"CLIPVisionModel",
"CLIPVisionModelAnyRes",
]:
visual_outputs = visual_outputs.hidden_states[-2][
:, 1:
]
elif type(self.vision_encoder).__name__ == "SiglipVisionModel":
visual_outputs = visual_outputs.hidden_states[-2]
else:
raise NotImplementedError
# aux encoder
if self.vision_encoder_aux is not None:
pixels_aux = []
for pixels in data["pixel_values_aux"]:
if pixels.dim() == 3:
pixels = pixels.unsqueeze(0)
elif pixels.dim() == 4:
pixels = pixels.permute(1, 0, 2, 3)
pixels_aux.append(pixels)
visual_outputs_aux = torch.cat(
pixels_aux, dim=0
) # shape (2, 3, 768, 768)
aux_output = self.vision_encoder_aux(
visual_outputs_aux
)
visual_outputs_aux = aux_output["image_features"]
last_feat = aux_output["last_feat"] # (B, 1536, 24, 24)
# fuser
fuse_features = self.fuser(
low_res_feat=visual_outputs, high_res_feat=last_feat
) # (2, 576, 1024)
pixel_values = self.projector(fuse_features)
data["pixel_values"] = pixel_values
# extract visual prompt features
bbox_visual_outputs = []
if "gt_boxes" in data:
for batch_idx, boxes in enumerate(data["gt_boxes"]):
if len(boxes) == 0:
bbox_visual_outputs.append(None)
continue
multi_level_aux_features = [
visual_output_aux[batch_idx].unsqueeze(0)
for visual_output_aux in visual_outputs_aux
]
boxes = boxes.to(torch.float32)
out_vp_feat = self.vp_encoder(
multi_level_aux_features,
[boxes],
).squeeze(0)
out_vp_feat = out_vp_feat.to(pixel_values.dtype)
out_vp_feat = self.vp_projector(out_vp_feat)
bbox_visual_outputs.append(out_vp_feat)
# b,n,c
data["bbox_feats"] = bbox_visual_outputs
data = prepare_inputs_labels_for_multimodal(llm=self.llm, **data)
return data
def generate(self, data_dict: Dict[str, Any], gen_config=None, tokenizer=None):
"""Perform inference on the given data.
Args:
data_dict (Dict[str, Any]): The data to perform inference on.
Returns:
str: The answer to the question.
"""
data_dict = self._prepare_data_for_llm(data_dict)
data_dict["inputs_embeds"] = data_dict["inputs_embeds"].to(self.llm.dtype)
stop_criteria = get_stop_criteria(
tokenizer=tokenizer, stop_words=[]
)
generate_output = self.llm.generate(
**data_dict,
generation_config=self.gen_config if gen_config is None else gen_config,
streamer=None,
bos_token_id=tokenizer.bos_token_id,
stopping_criteria=stop_criteria,
)
print(f'generate_output:', generate_output)
prediction = tokenizer.decode(
generate_output[0], skip_special_tokens=False
).strip()
prediction = prediction.replace("<s>", "").replace("</s>", "").strip()
return prediction
AutoConfig.register("chatrex", ChatRexAuxConfig)
AutoModelForCausalLM.register(ChatRexAuxConfig, ChatRexAuxForConditionalGeneration)
|