File size: 3,491 Bytes
e3bc6c5 9cd691f e3bc6c5 8296a97 e3bc6c5 9cd691f e3bc6c5 7ee0eea 8292604 7ee0eea de3909e b22e286 b082435 ab2d4cc b082435 7ee0eea ab2d4cc ddb3125 7ee0eea a587bee a4808bf e4a37ca a29c61a a4808bf 28e651c 3c815e8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 |
---
license: creativeml-openrail-m
language:
- en
pipeline_tag: text-to-image
tags:
- art
---
# Overview 📃✏️
This is a Diffusers-compatible version of [Yiffymix v51 by chilon249](https://civitai.com/models/3671?modelVersionId=658237).
See the original page for more information.
Keep in mind that this is [SDXL-Lightning](https://huggingface.co/ByteDance/SDXL-Lightning) checkpoint model,
so using fewer steps (around 12 to 25) and low guidance
scale (around 4 to 6) is recommended for the best result.
It's also recommended to use clip skip of 2.
This repo uses DPM++ 2M Karras as its sampler (Diffusers only).
# Diffusers Installation 🧨
### Dependencies Installation 📁
First, you'll need to install few dependencies. This is a one-time operation, you only need to run the code once.
```py
!pip install -q diffusers transformers accelerate
```
### Model Installation 💿
After the installation, you can run SDXL with Yiffymix v51 model using the code below:
```py
from diffusers import StableDiffusionXLPipeline
import torch
model = "IDK-ab0ut/Yiffymix_v51-XL"
pipeline = StableDiffusionXLPipeline.from_pretrained(
model, torch_dtype=torch.float16).to("cuda")
prompt = "a cat, detailed background, dynamic lighting"
negative_prompt = "low resolution, bad quality, deformed"
steps = 25
guidance_scale = 4
image = pipeline(prompt=prompt, negative_prompt=negative_prompt,
num_inference_steps=steps, guidance_scale=guidance_scale,
clip_skip=2).images[0]
image
```
Feel free to edit the image's configuration with your desire.
### Scheduler's Customization ⚙️
ㅤㅤㅤㅤ<small>🧨</small><b>For Diffusers</b><small>🧨</small>
You can see all available schedulers [here](https://huggingface.co/docs/diffusers/v0.11.0/en/api/schedulers/overview).
To use scheduler other than DPM++ 2M Karras for this repo, make sure to import the
corresponding pipeline for the scheduler you want to use. For example, we want to use Euler. First, import [EulerDiscreteScheduler](https://huggingface.co/docs/diffusers/v0.29.2/en/api/schedulers/euler#diffusers.EulerDiscreteScheduler) from Diffusers by adding this line of code.
```py
from diffusers import StableDiffusionXLPipeline, EulerDiscreteScheduler
```
Next step is to load the scheduler.
```py
model = "IDK-ab0ut/Yiffymix_v51"
euler = EulerDiscreteScheduler.from_pretrained(
model, subfolder="scheduler")
pipeline = StableDiffusionXLPipeline.from_pretrained(
model, scheduler=euler, torch.dtype=torch.float16
).to("cuda")
```
Now you can generate any images using the scheduler you want.
Another example is using DPM++ 2M SDE Karras. We want to import [DPMSolverMultistepScheduler](https://huggingface.co/docs/diffusers/v0.29.2/api/schedulers/multistep_dpm_solver) from Diffusers first.
```py
from diffusers import StableDiffusionXLPipeline, DPMSolverMultistepScheduler
```
Next, load the scheduler into the model.
```py
model = "IDK-ab0ut/Yiffymix_v51"
dpmsolver = DPMSolverMultistepScheduler.from_pretrained(
model, subfolder="scheduler", use_karras_sigmas=True,
algorithm_type="sde-dpmsolver++").to("cuda")
# 'use_karras_sigmas' is called to make the scheduler
# use Karras sigmas during sampling.
pipeline = StableDiffusionXLPipeline.from_pretrained(
model, scheduler=dpmsolver, torch.dtype=torch.float16,
).to("cuda")
```
# That's all for this repository. Thank you for reading my silly note. Have a nice day! |