--- base_model: - Salesforce/SFR-Iterative-DPO-LLaMA-3-8B-R library_name: transformers tags: - mergekit - merge --- A zero training self-merge test of [Salesforce/SFR-Iterative-DPO-LLaMA-3-8B-R](https://huggingface.co/Salesforce/SFR-Iterative-DPO-LLaMA-3-8B-R) using settings mentioned on [mistral-11b-slimorca](https://huggingface.co/chargoddard/mistral-11b-slimorca)
It's....not dumber I guess 🤷‍♀️ Simple PPL comparison
perplexity.exe -[MODEL] -f wiki.test.raw -b 512 -ngl 99
SFR-Iterative-DPO-LLaMA-3-8B-R-F16.gguf - Final estimate: PPL = 7.0279 +/- 0.04493
SFR-Iterative-DPO-LLaMA-3-11.5B-R-Q6_K.gguf - Final estimate: PPL = 7.0500 +/- 0.04516
Meta-Llama-3-8B-Instruct-Q6_K - Final estimate: PPL = 8.4727 +/- 0.06308
Tools used / version
Mergekit: c93c9bb
llama.cpp: b2876 # merged This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the passthrough merge method. ### Models Merged The following models were included in the merge: * [Salesforce/SFR-Iterative-DPO-LLaMA-3-8B-R](https://huggingface.co/Salesforce/SFR-Iterative-DPO-LLaMA-3-8B-R) ### Configuration The following YAML configuration was used to produce this model: ```yaml dtype: bfloat16 merge_method: passthrough slices: - sources: - layer_range: [0, 24] model: Salesforce/SFR-Iterative-DPO-LLaMA-3-8B-R - sources: - layer_range: [8, 24] model: Salesforce/SFR-Iterative-DPO-LLaMA-3-8B-R parameters: scale: - filter: o_proj value: 0.0 - filter: down_proj value: 0.0 - value: 1.0 - sources: - layer_range: [24, 32] model: Salesforce/SFR-Iterative-DPO-LLaMA-3-8B-R ```