IMFAA commited on
Commit
bc9f87f
1 Parent(s): cad4512

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +24 -26
README.md CHANGED
@@ -98,32 +98,30 @@ The trained model is valid for 14:2:1 phases only, which are stoichiometric comp
98
 
99
  **Model pipeline**
100
 
101
- The voting regressor to predict the Tc combines four base models.
 
 
 
 
 
102
 
103
- <style>#sk-31f1492d-398b-4eed-9409-15e41d2ae601 {color: black;background-color: white;}#sk-31f1492d-398b-4eed-9409-15e41d2ae601 pre{padding: 0;}#sk-31f1492d-398b-4eed-9409-15e41d2ae601 div.sk-toggleable {background-color: white;}#sk-31f1492d-398b-4eed-9409-15e41d2ae601 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.2em 0.3em;box-sizing: border-box;text-align: center;}#sk-31f1492d-398b-4eed-9409-15e41d2ae601 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-31f1492d-398b-4eed-9409-15e41d2ae601 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-31f1492d-398b-4eed-9409-15e41d2ae601 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-31f1492d-398b-4eed-9409-15e41d2ae601 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-31f1492d-398b-4eed-9409-15e41d2ae601 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-31f1492d-398b-4eed-9409-15e41d2ae601 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-31f1492d-398b-4eed-9409-15e41d2ae601 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;margin: 0.25em 0.25em;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;}#sk-31f1492d-398b-4eed-9409-15e41d2ae601 div.sk-estimator:hover {background-color: #d4ebff;}#sk-31f1492d-398b-4eed-9409-15e41d2ae601 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-31f1492d-398b-4eed-9409-15e41d2ae601 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-31f1492d-398b-4eed-9409-15e41d2ae601 div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}#sk-31f1492d-398b-4eed-9409-15e41d2ae601 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;}#sk-31f1492d-398b-4eed-9409-15e41d2ae601 div.sk-item {z-index: 1;}#sk-31f1492d-398b-4eed-9409-15e41d2ae601 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;}#sk-31f1492d-398b-4eed-9409-15e41d2ae601 div.sk-parallel-item {display: flex;flex-direction: column;position: relative;background-color: white;}#sk-31f1492d-398b-4eed-9409-15e41d2ae601 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-31f1492d-398b-4eed-9409-15e41d2ae601 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-31f1492d-398b-4eed-9409-15e41d2ae601 div.sk-parallel-item:only-child::after {width: 0;}#sk-31f1492d-398b-4eed-9409-15e41d2ae601 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0.2em;box-sizing: border-box;padding-bottom: 0.1em;background-color: white;position: relative;}#sk-31f1492d-398b-4eed-9409-15e41d2ae601 div.sk-label label {font-family: monospace;font-weight: bold;background-color: white;display: inline-block;line-height: 1.2em;}#sk-31f1492d-398b-4eed-9409-15e41d2ae601 div.sk-label-container {position: relative;z-index: 2;text-align: center;}#sk-31f1492d-398b-4eed-9409-15e41d2ae601 div.sk-container {display: inline-block;position: relative;}</style><div id="sk-31f1492d-398b-4eed-9409-15e41d2ae601" class"sk-top-container"><div class="sk-container"><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="ef7a2220-1243-414d-9815-7f672754c9cf" type="checkbox" ><label class="sk-toggleable__label" for="ef7a2220-1243-414d-9815-7f672754c9cf">VotingRegressor</label><div class="sk-toggleable__content"><pre>VotingRegressor(estimators=[('ET', ExtraTreesRegressor()),
104
- ('XGB',
105
- XGBRegressor(alpha=0.5, base_score=0.5,
106
- booster='gbtree', colsample_bylevel=1,
107
- colsample_bynode=1,
108
- colsample_bytree=0.4,
109
- enable_categorical=False, gamma=0,
110
- gpu_id=-1, importance_type=None,
111
- interaction_constraints='',
112
- learning_rate=0.2, max_delta_step=0,
113
- max_depth=2, min_child_weight=1,
114
- missing=nan,
115
- mo...
116
- n_estimators=1000, n_jobs=8,
117
- num_parallel_tree=1, predictor='auto',
118
- random_state=0, reg_alpha=0.5,
119
- reg_lambda=1, scale_pos_weight=1,
120
- subsample=1, tree_method='exact',
121
- validate_parameters=1,
122
- verbosity=None)),
123
- ('RF', RandomForestRegressor(max_depth=100)),
124
- ('AB',
125
- AdaBoostRegressor(base_estimator=RandomForestRegressor(max_depth=50,
126
- n_estimators=50),
127
- learning_rate=0.001))])
128
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
129
 
 
 
98
 
99
  **Model pipeline**
100
 
101
+ The voting regressor to predict the Tc combines the following four base models and equal weight is assigned to each base models.
102
+
103
+ 1. Extra tree regressor (ET)
104
+ 2. Extreme gradient boosting (XGB)
105
+ 3. Random forest regressor (RF)
106
+ 4. Adaptive boosted RF regressor (AB)
107
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
108
 
109
+ # How to use the trained model for inference
110
+
111
+ ```python
112
+ import json
113
+ from joblib
114
+ import pandas as pd
115
+
116
+ Tc_predictor = load('Magnet_Tc_predictor.joblib') # trained model
117
+ config = json.load(open('config.json')) # config file
118
+ features = config['features'] # feature extraction
119
+
120
+ #data = pd.read_excel("data.xlsx") # read test file with new compositions
121
+ data = data[features]
122
+ #data.columns = ["feat_" + str(col) for col in data.columns]
123
+
124
+ Predicted_value = Tc_predictor.predict(data) # predict Tc values
125
+ print("Predicted Tc value is: {0:.2f}'.format(predictions)")
126
 
127
+ ```