--- library_name: sklearn tags: - tabular-regression - materials property prediction - baseline-trainer widget: structuredData: Sc: - 0 Ti: - 0 V: - 0 Cr: - 0 Mn: - 0 Fe: - 12.0 Co: - 2.0 Ni: - 0 Cu: - 0 Al: - 0 Si: - 0 Ga: - 0 Ge: - 0 Be: - 0 Nb: - 0 Mo: - 0 Re: - 0 Ru: - 0 La: - 0 Ce: - 0 Pr: - 1.9 Nd: - 0 Sm: - 0 Eu: - 0 Gd: - 0 Tb: - 0.1 Dy: - 0 Ho: - 0 Er: - 0 Tm: - 0 Yb: - 0 Lu: - 0 Th: - 0 Y: - 0 Zr: - 0 B: - 0 C: - 0 --- **Model Description** The magnet Curie temperature (Tc [K]) predictor model has been trained using a supervised learning approach on a specific set of magnet classes having 14:2:1 phases. The dataset to train the Tc prediction model is a distinct literature source. Further, the Tc values for various 14:2:1 magnet phases at room temperature are considered for dataset creation. It predicts the Tc value using the chemical composition as a feature. E.g: To predict the Tc value Nd2Fe14B1 magnet composition, the features are Nd=2, Fe=14, and B=1. **Application & Limitations** The trained model is valid for 14:2:1 phases only, which are stoichiometric compositions and the predicted Tc value is in Kelvin and at room temperature. **Model pipeline** The voting regressor to predict the Tc combines four base models.
VotingRegressor(estimators=[('ET', ExtraTreesRegressor()), ('XGB', XGBRegressor(alpha=0.5, base_score=0.5, booster='gbtree', colsample_bylevel=1, colsample_bynode=1, colsample_bytree=0.4, enable_categorical=False, gamma=0, gpu_id=-1, importance_type=None, interaction_constraints='', learning_rate=0.2, max_delta_step=0, max_depth=2, min_child_weight=1, missing=nan, mo... n_estimators=1000, n_jobs=8, num_parallel_tree=1, predictor='auto', random_state=0, reg_alpha=0.5, reg_lambda=1, scale_pos_weight=1, subsample=1, tree_method='exact', validate_parameters=1, verbosity=None)), ('RF', RandomForestRegressor(max_depth=100)), ('AB', AdaBoostRegressor(base_estimator=RandomForestRegressor(max_depth=50, n_estimators=50), learning_rate=0.001))])