File size: 9,020 Bytes
d10f96a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 |
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors, The HuggingFace Inc. team,
# and Marco Polignano.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization classes for Italian AlBERTo models."""
import collections
import logging
import os
import re
import logger
try:
from ekphrasis.classes.preprocessor import TextPreProcessor
from ekphrasis.classes.tokenizer import SocialTokenizer
from ekphrasis.dicts.emoticons import emoticons
except ImportError:
#logger.warning(
# "You need to install ekphrasis to use AlBERToTokenizer"
# "pip install ekphrasis"
#)
from pip._internal import main as pip
pip(['install', '--user', 'ekphrasis'])
from ekphrasis.classes.preprocessor import TextPreProcessor
from ekphrasis.classes.tokenizer import SocialTokenizer
from ekphrasis.dicts.emoticons import emoticons
try:
import numpy as np
except ImportError:
logger.warning(
"You need to install numpy to use AlBERToTokenizer"
"pip install numpy"
)
from pip._internal import main as pip
pip(['install', '--user', 'pandas'])
import pandas as pd
try:
from transformers import BertTokenizer, WordpieceTokenizer
from transformers.tokenization_bert import load_vocab
except ImportError:
logger.warning(
"You need to install pytorch-transformers to use AlBERToTokenizer"
"pip install pytorch-transformers"
)
from pip._internal import main as pip
pip(['install', '--user', 'pytorch-transformers'])
from transformers import BertTokenizer, WordpieceTokenizer
from transformers.tokenization_bert import load_vocab
text_processor = TextPreProcessor(
# terms that will be normalized
normalize=['url', 'email', 'user', 'percent', 'money', 'phone', 'time', 'date', 'number'],
# terms that will be annotated
annotate={"hashtag"},
fix_html=True, # fix HTML tokens
unpack_hashtags=True, # perform word segmentation on hashtags
# select a tokenizer. You can use SocialTokenizer, or pass your own
# the tokenizer, should take as input a string and return a list of tokens
tokenizer=SocialTokenizer(lowercase=True).tokenize,
dicts=[emoticons]
)
class AlBERTo_Preprocessing(object):
def __init__(self, do_lower_case=True, **kwargs):
self.do_lower_case = do_lower_case
def preprocess(self, text):
if self.do_lower_case:
text = text.lower()
text = str(" ".join(text_processor.pre_process_doc(text)))
text = re.sub(r'[^a-zA-ZÀ-ú</>!?♥♡\s\U00010000-\U0010ffff]', ' ', text)
text = re.sub(r'\s+', ' ', text)
text = re.sub(r'(\w)\1{2,}', r'\1\1', text)
text = re.sub(r'^\s', '', text)
text = re.sub(r'\s$', '', text)
return text
class AlBERToTokenizer(BertTokenizer):
def __init__(self, vocab_file, do_lower_case=True,
do_basic_tokenize=True, do_char_tokenize=False, do_wordpiece_tokenize=False, do_preprocessing = True, unk_token='[UNK]',
sep_token='[SEP]',
pad_token='[PAD]', cls_token='[CLS]', mask_token='[MASK]', **kwargs):
super(BertTokenizer, self).__init__(
unk_token=unk_token, sep_token=sep_token, pad_token=pad_token,
cls_token=cls_token, mask_token=mask_token, **kwargs)
self.do_wordpiece_tokenize = do_wordpiece_tokenize
self.do_lower_case = do_lower_case
self.vocab_file = vocab_file
self.do_basic_tokenize = do_basic_tokenize
self.do_char_tokenize = do_char_tokenize
self.unk_token = unk_token
self.do_preprocessing = do_preprocessing
if not os.path.isfile(vocab_file):
raise ValueError(
"Can't find a vocabulary file at path '{}'.".format(vocab_file))
self.vocab = load_vocab(vocab_file)
self.ids_to_tokens = collections.OrderedDict(
[(ids, tok) for tok, ids in self.vocab.items()])
if do_wordpiece_tokenize:
self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab,
unk_token=self.unk_token)
self.base_bert_tok = BertTokenizer(vocab_file=self.vocab_file, do_lower_case=do_lower_case,
unk_token=unk_token, sep_token=sep_token, pad_token=pad_token,
cls_token=cls_token, mask_token=mask_token, **kwargs)
def _convert_token_to_id(self, token):
"""Converts a token (str/unicode) to an id using the vocab."""
# if token[:2] == '##':
# token = token[2:]
return self.vocab.get(token, self.vocab.get(self.unk_token))
def convert_token_to_id(self, token):
return self._convert_token_to_id(token)
return self.vocab.get(token, self.vocab.get(self.unk_token))
def _convert_id_to_token(self, id):
# if token[:2] == '##':
# token = token[2:]
return list(self.vocab.keys())[int(id)]
def convert_id_to_token(self, id):
return self._convert_id_to_token(id)
def _convert_tokens_to_string(self,tokens):
"""Converts a sequence of tokens (string) to a single string."""
out_string = ' '.join(tokens).replace('##', '').strip()
return out_string
def convert_tokens_to_string(self,tokens):
return self._convert_tokens_to_string(tokens)
def _tokenize(self, text, never_split=None, **kwargs):
if self.do_preprocessing:
if self.do_lower_case:
text = text.lower()
text = str(" ".join(text_processor.pre_process_doc(text)))
text = re.sub(r'[^a-zA-ZÀ-ú</>!?♥♡\s\U00010000-\U0010ffff]', ' ', text)
text = re.sub(r'\s+', ' ', text)
text = re.sub(r'(\w)\1{2,}', r'\1\1', text)
text = re.sub(r'^\s', '', text)
text = re.sub(r'\s$', '', text)
# print(s)
split_tokens = [text]
if self.do_wordpiece_tokenize:
wordpiece_tokenizer = WordpieceTokenizer(self.vocab,self.unk_token)
split_tokens = wordpiece_tokenizer.tokenize(text)
elif self.do_char_tokenize:
tokenizer = CharacterTokenizer(self.vocab, self.unk_token)
split_tokens = tokenizer.tokenize(text)
elif self.do_basic_tokenize:
"""Tokenizes a piece of text."""
split_tokens = self.base_bert_tok.tokenize(text)
return split_tokens
def tokenize(self, text, never_split=None, **kwargs):
return self._tokenize(text, never_split)
class CharacterTokenizer(object):
"""Runs Character tokenziation."""
def __init__(self, vocab, unk_token,
max_input_chars_per_word=100, with_markers=True):
"""Constructs a CharacterTokenizer.
Args:
vocab: Vocabulary object.
unk_token: A special symbol for out-of-vocabulary token.
with_markers: If True, "#" is appended to each output character except the
first one.
"""
self.vocab = vocab
self.unk_token = unk_token
self.max_input_chars_per_word = max_input_chars_per_word
self.with_markers = with_markers
def tokenize(self, text):
"""Tokenizes a piece of text into characters.
For example:
input = "apple"
output = ["a", "##p", "##p", "##l", "##e"] (if self.with_markers is True)
output = ["a", "p", "p", "l", "e"] (if self.with_markers is False)
Args:
text: A single token or whitespace separated tokens.
This should have already been passed through `BasicTokenizer`.
Returns:
A list of characters.
"""
output_tokens = []
for i, char in enumerate(text):
if char not in self.vocab:
output_tokens.append(self.unk_token)
continue
if self.with_markers and i != 0:
output_tokens.append('##' + char)
else:
output_tokens.append(char)
return output_tokens
if __name__== "__main__":
a = AlBERTo_Preprocessing(do_lower_case=True)
s = "#IlGOverno presenta le linee guida sulla scuola #labuonascuola - http://t.co/SYS1T9QmQN"
b = a.preprocess(s)
print(b)
c =AlBERToTokenizer(do_lower_case=True,vocab_file="vocab.txt", do_preprocessing=True)
d = c.tokenize(s)
print(d) |