waste-detection-faster_rcnn-mmdetection
/
faster_rcnn_resnet101_1xcoco-default-mmdetection-config.py
num_batch_size = 2 | |
num_epochs = 12 | |
num_frozen_stages = 1 | |
# DATASET | |
dataset_type = 'CocoDataset' | |
data_root = 'data/coco/' | |
backend_args = None | |
train_pipeline = [ | |
dict(type='LoadImageFromFile', backend_args=backend_args), | |
dict(type='LoadAnnotations', with_bbox=True), | |
dict(type='Resize', scale=(1280, 1280), keep_ratio=True), | |
dict(type='RandomFlip', prob=0.5), | |
dict(type='PackDetInputs') | |
] | |
train_dataloader = dict( | |
batch_size=num_batch_size, | |
num_workers=2, | |
persistent_workers=True, | |
sampler=dict(type='DefaultSampler', shuffle=True), | |
batch_sampler=dict(type='AspectRatioBatchSampler'), | |
dataset=dict( | |
type=dataset_type, | |
data_root=data_root, | |
ann_file='train/annotations_coco.json', | |
data_prefix=dict(img='train/'), | |
filter_cfg=dict(filter_empty_gt=True, min_size=32), | |
pipeline=train_pipeline, | |
backend_args=backend_args)) | |
val_pipeline = [ | |
dict(type='LoadImageFromFile', backend_args=backend_args), | |
dict(type='Resize', scale=(1280, 1280), keep_ratio=True), | |
dict(type='LoadAnnotations', with_bbox=True), | |
dict(type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor')) | |
] | |
val_dataloader = dict( | |
batch_size=num_batch_size, | |
num_workers=2, | |
persistent_workers=True, | |
drop_last=False, | |
sampler=dict(type='DefaultSampler', shuffle=False), | |
dataset=dict( | |
type=dataset_type, | |
data_root=data_root, | |
ann_file='valid/annotations_coco.json', | |
data_prefix=dict(img='valid/'), | |
test_mode=True, | |
pipeline=val_pipeline, | |
backend_args=backend_args)) | |
val_evaluator = dict( | |
type='CocoMetric', | |
ann_file=data_root + 'valid/annotations_coco.json', | |
metric='bbox', | |
format_only=False, | |
backend_args=backend_args) | |
test_pipeline = [ | |
dict(type='LoadImageFromFile', backend_args=backend_args), | |
dict(type='Resize', scale=(1280, 1280), keep_ratio=True), | |
dict(type='LoadAnnotations', with_bbox=True), | |
dict(type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor')) | |
] | |
test_dataloader = dict( | |
batch_size=num_batch_size, | |
num_workers=2, | |
persistent_workers=True, | |
drop_last=False, | |
sampler=dict(type='DefaultSampler', shuffle=False), | |
dataset=dict( | |
type=dataset_type, | |
data_root=data_root, | |
ann_file=data_root + 'test/annotations_coco.json', | |
data_prefix=dict(img='test/'), | |
test_mode=True, | |
pipeline=test_pipeline)) | |
test_evaluator = dict( | |
type='CocoMetric', | |
metric='bbox', | |
format_only=True, | |
ann_file=data_root + 'test/annotations_coco.json', | |
outfile_prefix='./work_dirs/coco_detection/test') | |
# MODEL | |
model = dict( | |
type='FasterRCNN', | |
data_preprocessor=dict( | |
type='DetDataPreprocessor', | |
mean=[123.675, 116.28, 103.53], | |
std=[58.395, 57.12, 57.375], | |
bgr_to_rgb=True, | |
pad_size_divisor=32), | |
backbone=dict( | |
type='ResNet', | |
depth=50, | |
num_stages=4, | |
out_indices=(0, 1, 2, 3), | |
frozen_stages=num_frozen_stages, | |
norm_cfg=dict(type='BN', requires_grad=True), | |
norm_eval=True, | |
style='pytorch', | |
init_cfg=dict(type='Pretrained', checkpoint='https://download.openxlab.org.cn/models/mmdetection/FasterR-CNN/weight/faster-rcnn_r101_fpn_1x_coco')), | |
neck=dict(type='FPN', in_channels=[256, 512, 1024, 2048], out_channels=256, num_outs=5), | |
rpn_head=dict( | |
type='RPNHead', | |
in_channels=256, feat_channels=256, | |
anchor_generator=dict(type='AnchorGenerator', scales=[8], ratios=[0.5, 1.0, 2.0], strides=[4, 8, 16, 32, 64]), | |
bbox_coder=dict(type='DeltaXYWHBBoxCoder', target_means=[.0, .0, .0, .0], target_stds=[1.0, 1.0, 1.0, 1.0]), | |
loss_cls=dict(type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0), | |
loss_bbox=dict(type='L1Loss', loss_weight=1.0)), | |
roi_head=dict( | |
type='StandardRoIHead', | |
bbox_roi_extractor=dict( | |
type='SingleRoIExtractor', | |
roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=0), | |
out_channels=256, featmap_strides=[4, 8, 16, 32]), | |
bbox_head=dict( | |
type='Shared2FCBBoxHead', | |
in_channels=256, | |
fc_out_channels=1024, | |
roi_feat_size=7, | |
num_classes=80, | |
bbox_coder=dict(type='DeltaXYWHBBoxCoder', target_means=[0., 0., 0., 0.], target_stds=[0.1, 0.1, 0.2, 0.2]), | |
reg_class_agnostic=False, | |
loss_cls=dict(type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), | |
loss_bbox=dict(type='L1Loss', loss_weight=1.0))), | |
# model training and testing settings | |
train_cfg=dict( | |
rpn=dict( | |
assigner=dict( | |
type='MaxIoUAssigner', | |
pos_iou_thr=0.7, neg_iou_thr=0.3, min_pos_iou=0.3, | |
match_low_quality=True, ignore_iof_thr=-1), | |
sampler=dict(type='RandomSampler', num=256, pos_fraction=0.5, neg_pos_ub=-1, add_gt_as_proposals=False), | |
allowed_border=-1, pos_weight=-1, debug=False), | |
rpn_proposal=dict(nms_pre=2000, max_per_img=1000, nms=dict(type='nms', iou_threshold=0.7), min_bbox_size=0), | |
rcnn=dict( | |
assigner=dict( | |
type='MaxIoUAssigner', | |
pos_iou_thr=0.5, neg_iou_thr=0.5, min_pos_iou=0.5, | |
match_low_quality=False, ignore_iof_thr=-1), | |
sampler=dict(type='RandomSampler', num=512, pos_fraction=0.25, neg_pos_ub=-1, add_gt_as_proposals=True), | |
pos_weight=-1, | |
debug=False)), | |
test_cfg=dict( | |
rpn=dict(nms_pre=1000, max_per_img=1000, nms=dict(type='nms', iou_threshold=0.7), min_bbox_size=0), | |
rcnn=dict(score_thr=0.05, nms=dict(type='nms', iou_threshold=0.5), max_per_img=100) | |
)) | |
# RUNTIME | |
default_scope = 'mmdet' | |
default_hooks = dict( | |
timer=dict(type='IterTimerHook'), | |
logger=dict(type='LoggerHook', interval=50), | |
param_scheduler=dict(type='ParamSchedulerHook'), | |
checkpoint=dict(type='CheckpointHook', interval=1), | |
sampler_seed=dict(type='DistSamplerSeedHook'), | |
visualization=dict(type='DetVisualizationHook')) | |
env_cfg = dict( | |
cudnn_benchmark=False, | |
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0), | |
dist_cfg=dict(backend='nccl'), | |
) | |
vis_backends = [dict(type='LocalVisBackend')] | |
visualizer = dict(type='DetLocalVisualizer', vis_backends=vis_backends, name='visualizer') | |
log_processor = dict(type='LogProcessor', window_size=50, by_epoch=True) | |
log_level = 'INFO' | |
load_from = None | |
resume = False | |
# SCHEDULE | |
# training schedule for 1x | |
train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=num_epochs, val_interval=1) | |
val_cfg = dict(type='ValLoop') | |
test_cfg = dict(type='TestLoop') | |
# learning rate | |
param_scheduler = [ | |
dict(type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500), | |
dict(type='MultiStepLR', begin=0, end=12, by_epoch=True, milestones=[8, 11], gamma=0.1) | |
] | |
# optimizer | |
optim_wrapper = dict(type='OptimWrapper', optimizer=dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001)) | |
auto_scale_lr = dict(enable=False, base_batch_size=16) | |