|
num_batch_size = 4
|
|
num_epochs = 15
|
|
num_frozen_stages = 2
|
|
|
|
auto_scale_lr = dict(base_batch_size=2, enable=False)
|
|
backend_args = None
|
|
data_root = 'C:/vs_code_workspaces/mmdetection/mmdetection/data/ins/v9'
|
|
dataset_type = 'CocoDataset'
|
|
default_hooks = dict(
|
|
checkpoint=dict(interval=1, type='CheckpointHook'),
|
|
logger=dict(interval=50, type='LoggerHook'),
|
|
param_scheduler=dict(type='ParamSchedulerHook'),
|
|
sampler_seed=dict(type='DistSamplerSeedHook'),
|
|
timer=dict(type='IterTimerHook'),
|
|
visualization=dict(type='DetVisualizationHook'))
|
|
default_scope = 'mmdet'
|
|
env_cfg = dict(cudnn_benchmark=False, dist_cfg=dict(backend='nccl'), mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0))
|
|
launcher = 'none'
|
|
load_from = 'C:/vs_code_workspaces/mmdetection/mmdetection/ins_development/resources/add300_frozen2/epoch_9.pth'
|
|
log_level = 'INFO'
|
|
log_processor = dict(by_epoch=True, type='LogProcessor', window_size=50)
|
|
metainfo = dict(classes=('waste', ), palette=[ (220, 20, 60, ),])
|
|
model = dict(
|
|
backbone=dict(
|
|
depth=101,
|
|
frozen_stages=num_frozen_stages,
|
|
init_cfg=dict(checkpoint='C:/Users/INS/.cache/torch/hub/checkpoints/resnet101-63fe2227.pth', type='Pretrained'),
|
|
norm_cfg=dict(requires_grad=True, type='BN'),
|
|
norm_eval=True,
|
|
num_stages=4,
|
|
out_indices=(0, 1, 2, 3, ),
|
|
style='pytorch',
|
|
type='ResNet'),
|
|
data_preprocessor=dict(
|
|
bgr_to_rgb=True,
|
|
mean=[123.675, 116.28, 103.53, ],
|
|
pad_size_divisor=32,
|
|
std=[58.395, 57.12, 57.375, ],
|
|
type='DetDataPreprocessor'),
|
|
neck=dict(in_channels=[256, 512, 1024, 2048, ],
|
|
num_outs=5,
|
|
out_channels=256,
|
|
type='FPN'),
|
|
roi_head=dict(
|
|
bbox_head=dict(
|
|
bbox_coder=dict(
|
|
target_means=[0.0, 0.0, 0.0, 0.0,],
|
|
target_stds=[0.1, 0.1, 0.2, 0.2,],
|
|
type='DeltaXYWHBBoxCoder'),
|
|
fc_out_channels=1024,
|
|
in_channels=256,
|
|
loss_bbox=dict(loss_weight=1.0, type='L1Loss'),
|
|
loss_cls=dict(
|
|
loss_weight=1.0, type='CrossEntropyLoss', use_sigmoid=False),
|
|
num_classes=1,
|
|
reg_class_agnostic=False,
|
|
roi_feat_size=7,
|
|
type='Shared2FCBBoxHead'),
|
|
bbox_roi_extractor=dict(
|
|
featmap_strides=[4, 8, 16, 32, ],
|
|
out_channels=256,
|
|
roi_layer=dict(output_size=7, sampling_ratio=0, type='RoIAlign'),
|
|
type='SingleRoIExtractor'),
|
|
type='StandardRoIHead'),
|
|
rpn_head=dict(
|
|
anchor_generator=dict(
|
|
ratios=[0.5, 1.0, 2.0, ],
|
|
scales=[8,],
|
|
strides=[4, 8, 16, 32, 64, ],
|
|
type='AnchorGenerator'),
|
|
bbox_coder=dict(
|
|
target_means=[0.0, 0.0, 0.0, 0.0, ],
|
|
target_stds=[1.0, 1.0, 1.0, 1.0, ],
|
|
type='DeltaXYWHBBoxCoder'),
|
|
feat_channels=256,
|
|
in_channels=256,
|
|
loss_bbox=dict(loss_weight=1.0, type='L1Loss'),
|
|
loss_cls=dict(loss_weight=1.0, type='CrossEntropyLoss', use_sigmoid=True),
|
|
type='RPNHead'),
|
|
test_cfg=dict(
|
|
rcnn=dict(
|
|
max_per_img=100,
|
|
nms=dict(iou_threshold=0.5, type='nms'),
|
|
score_thr=0.05),
|
|
rpn=dict(
|
|
max_per_img=1000,
|
|
min_bbox_size=0,
|
|
nms=dict(iou_threshold=0.7, type='nms'),
|
|
nms_pre=1000)),
|
|
train_cfg=dict(
|
|
rcnn=dict(
|
|
assigner=dict(
|
|
ignore_iof_thr=-1,
|
|
match_low_quality=False,
|
|
min_pos_iou=0.5,
|
|
neg_iou_thr=0.5,
|
|
pos_iou_thr=0.5,
|
|
type='MaxIoUAssigner'),
|
|
debug=False,
|
|
pos_weight=-1,
|
|
sampler=dict(
|
|
add_gt_as_proposals=True,
|
|
neg_pos_ub=-1,
|
|
num=512,
|
|
pos_fraction=0.25,
|
|
type='RandomSampler')),
|
|
rpn=dict(
|
|
allowed_border=-1,
|
|
assigner=dict(
|
|
ignore_iof_thr=-1,
|
|
match_low_quality=True,
|
|
min_pos_iou=0.3,
|
|
neg_iou_thr=0.3,
|
|
pos_iou_thr=0.7,
|
|
type='MaxIoUAssigner'),
|
|
debug=False,
|
|
pos_weight=-1,
|
|
sampler=dict(
|
|
add_gt_as_proposals=False,
|
|
neg_pos_ub=-1,
|
|
num=256,
|
|
pos_fraction=0.5,
|
|
type='RandomSampler')),
|
|
rpn_proposal=dict(
|
|
max_per_img=1000,
|
|
min_bbox_size=0,
|
|
nms=dict(iou_threshold=0.7, type='nms'),
|
|
nms_pre=2000)),
|
|
type='FasterRCNN')
|
|
optim_wrapper = dict(
|
|
optimizer=dict(lr=0.02, momentum=0.9, type='SGD', weight_decay=0.0001),
|
|
type='OptimWrapper')
|
|
param_scheduler = [
|
|
dict(begin=0, by_epoch=False, end=500, start_factor=0.001, type='LinearLR'),
|
|
dict(begin=0, by_epoch=True, end=12, gamma=0.1, milestones=[8, 11, ], type='MultiStepLR'),
|
|
]
|
|
resume = False
|
|
test_cfg = dict(type='TestLoop')
|
|
test_dataloader = dict(
|
|
batch_size=num_batch_size,
|
|
dataset=dict(
|
|
ann_file='test/annotations_coco.json',
|
|
backend_args=None,
|
|
data_prefix=dict(img='test/'),
|
|
data_root=data_root,
|
|
metainfo=dict(classes=('waste', ), palette=[(220, 20, 60, ), ]),
|
|
pipeline=[
|
|
dict(backend_args=None, type='LoadImageFromFile'),
|
|
dict(keep_ratio=True, scale=(1280, 1280, ), type='Resize'),
|
|
dict(type='LoadAnnotations', with_bbox=True),
|
|
dict(meta_keys=( 'img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor',), type='PackDetInputs'),
|
|
],
|
|
test_mode=True,
|
|
type='CocoDataset'),
|
|
drop_last=False,
|
|
num_workers=2,
|
|
persistent_workers=True,
|
|
sampler=dict(shuffle=False, type='DefaultSampler'))
|
|
test_evaluator = dict(
|
|
ann_file='data/ins_annotated_v9/test/annotations_coco.json',
|
|
backend_args=None,
|
|
format_only=False,
|
|
metric='bbox',
|
|
type='CocoMetric')
|
|
test_pipeline = [
|
|
dict(backend_args=None, type='LoadImageFromFile'),
|
|
dict(keep_ratio=True, scale=(1280, 1280,), type='Resize'),
|
|
dict(type='LoadAnnotations', with_bbox=True),
|
|
dict(meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor',),type='PackDetInputs'),
|
|
]
|
|
train_cfg = dict(max_epochs=num_epochs, type='EpochBasedTrainLoop', val_interval=1)
|
|
train_dataloader = dict(
|
|
batch_sampler=dict(type='AspectRatioBatchSampler'),
|
|
batch_size=num_batch_size,
|
|
dataset=dict(
|
|
ann_file='train/annotations_coco.json',
|
|
backend_args=None,
|
|
data_prefix=dict(img='train/'),
|
|
data_root=data_root,
|
|
filter_cfg=dict(filter_empty_gt=True, min_size=32),
|
|
metainfo=dict(classes=('waste', ), palette=[(220, 20, 60, ),]),
|
|
pipeline=[
|
|
dict(backend_args=None, type='LoadImageFromFile'),
|
|
dict(type='LoadAnnotations', with_bbox=True),
|
|
dict(keep_ratio=True, scale=(1280, 1280, ), type='Resize'),
|
|
dict(prob=0.5, type='RandomFlip'),
|
|
dict(type='PackDetInputs'),
|
|
],
|
|
type='CocoDataset'),
|
|
num_workers=2,
|
|
persistent_workers=True,
|
|
sampler=dict(shuffle=True, type='DefaultSampler'))
|
|
train_pipeline = [
|
|
dict(backend_args=None, type='LoadImageFromFile'),
|
|
dict(type='LoadAnnotations', with_bbox=True),
|
|
dict(keep_ratio=True, scale=(1280, 1280, ), type='Resize'),
|
|
dict(prob=0.5, type='RandomFlip'),
|
|
dict(type='PackDetInputs'),
|
|
]
|
|
val_cfg = dict(type='ValLoop')
|
|
val_dataloader = dict(
|
|
batch_size=num_batch_size,
|
|
dataset=dict(
|
|
ann_file='valid/annotations_coco.json',
|
|
backend_args=None,
|
|
data_prefix=dict(img='valid/'),
|
|
data_root=data_root,
|
|
metainfo=dict(classes=('waste', ), palette=[(220, 20, 60, ),]),
|
|
pipeline=[
|
|
dict(backend_args=None, type='LoadImageFromFile'),
|
|
dict(keep_ratio=True, scale=(1280, 1280,), type='Resize'),
|
|
dict(type='LoadAnnotations', with_bbox=True),
|
|
dict(meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor', ),type='PackDetInputs'),
|
|
],
|
|
test_mode=True,
|
|
type='CocoDataset'),
|
|
drop_last=False,
|
|
num_workers=2,
|
|
persistent_workers=True,
|
|
sampler=dict(shuffle=False, type='DefaultSampler'))
|
|
val_evaluator = dict(
|
|
ann_file='data/ins_annotated_v9/valid/annotations_coco.json',
|
|
backend_args=None,
|
|
format_only=False,
|
|
metric='bbox',
|
|
type='CocoMetric')
|
|
val_pipeline = [
|
|
dict(backend_args=None, type='LoadImageFromFile'),
|
|
dict(keep_ratio=True, scale=(1280, 1280, ), type='Resize'),
|
|
dict(type='LoadAnnotations', with_bbox=True),
|
|
dict(meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor',), type='PackDetInputs'),
|
|
]
|
|
vis_backends = [dict(type='LocalVisBackend'), ]
|
|
visualizer = dict(name='visualizer', type='DetLocalVisualizer', vis_backends=[dict(type='LocalVisBackend'), ])
|
|
work_dir = './ins_development/training/ins_annotated_v9/pretrained/add300/faster/2frozen/e9\\'
|
|
|