num_batch_size = 2 num_epochs = 12 num_frozen_stages = 1 # DATASET dataset_type = 'CocoDataset' data_root = 'data/coco/' backend_args = None train_pipeline = [ dict(type='LoadImageFromFile', backend_args=backend_args), dict(type='LoadAnnotations', with_bbox=True), dict(type='Resize', scale=(1280, 1280), keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] train_dataloader = dict( batch_size=num_batch_size, num_workers=2, persistent_workers=True, sampler=dict(type='DefaultSampler', shuffle=True), batch_sampler=dict(type='AspectRatioBatchSampler'), dataset=dict( type=dataset_type, data_root=data_root, ann_file='train/annotations_coco.json', data_prefix=dict(img='train/'), filter_cfg=dict(filter_empty_gt=True, min_size=32), pipeline=train_pipeline, backend_args=backend_args)) val_pipeline = [ dict(type='LoadImageFromFile', backend_args=backend_args), dict(type='Resize', scale=(1280, 1280), keep_ratio=True), dict(type='LoadAnnotations', with_bbox=True), dict(type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor')) ] val_dataloader = dict( batch_size=num_batch_size, num_workers=2, persistent_workers=True, drop_last=False, sampler=dict(type='DefaultSampler', shuffle=False), dataset=dict( type=dataset_type, data_root=data_root, ann_file='valid/annotations_coco.json', data_prefix=dict(img='valid/'), test_mode=True, pipeline=val_pipeline, backend_args=backend_args)) val_evaluator = dict( type='CocoMetric', ann_file=data_root + 'valid/annotations_coco.json', metric='bbox', format_only=False, backend_args=backend_args) test_pipeline = [ dict(type='LoadImageFromFile', backend_args=backend_args), dict(type='Resize', scale=(1280, 1280), keep_ratio=True), dict(type='LoadAnnotations', with_bbox=True), dict(type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor')) ] test_dataloader = dict( batch_size=num_batch_size, num_workers=2, persistent_workers=True, drop_last=False, sampler=dict(type='DefaultSampler', shuffle=False), dataset=dict( type=dataset_type, data_root=data_root, ann_file=data_root + 'test/annotations_coco.json', data_prefix=dict(img='test/'), test_mode=True, pipeline=test_pipeline)) test_evaluator = dict( type='CocoMetric', metric='bbox', format_only=True, ann_file=data_root + 'test/annotations_coco.json', outfile_prefix='./work_dirs/coco_detection/test') # MODEL model = dict( type='FasterRCNN', data_preprocessor=dict( type='DetDataPreprocessor', mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], bgr_to_rgb=True, pad_size_divisor=32), backbone=dict( type='ResNet', depth=50, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=num_frozen_stages, norm_cfg=dict(type='BN', requires_grad=True), norm_eval=True, style='pytorch', init_cfg=dict(type='Pretrained', checkpoint='https://download.openxlab.org.cn/models/mmdetection/FasterR-CNN/weight/faster-rcnn_r101_fpn_1x_coco')), neck=dict(type='FPN', in_channels=[256, 512, 1024, 2048], out_channels=256, num_outs=5), rpn_head=dict( type='RPNHead', in_channels=256, feat_channels=256, anchor_generator=dict(type='AnchorGenerator', scales=[8], ratios=[0.5, 1.0, 2.0], strides=[4, 8, 16, 32, 64]), bbox_coder=dict(type='DeltaXYWHBBoxCoder', target_means=[.0, .0, .0, .0], target_stds=[1.0, 1.0, 1.0, 1.0]), loss_cls=dict(type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0), loss_bbox=dict(type='L1Loss', loss_weight=1.0)), roi_head=dict( type='StandardRoIHead', bbox_roi_extractor=dict( type='SingleRoIExtractor', roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=0), out_channels=256, featmap_strides=[4, 8, 16, 32]), bbox_head=dict( type='Shared2FCBBoxHead', in_channels=256, fc_out_channels=1024, roi_feat_size=7, num_classes=80, bbox_coder=dict(type='DeltaXYWHBBoxCoder', target_means=[0., 0., 0., 0.], target_stds=[0.1, 0.1, 0.2, 0.2]), reg_class_agnostic=False, loss_cls=dict(type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='L1Loss', loss_weight=1.0))), # model training and testing settings train_cfg=dict( rpn=dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.7, neg_iou_thr=0.3, min_pos_iou=0.3, match_low_quality=True, ignore_iof_thr=-1), sampler=dict(type='RandomSampler', num=256, pos_fraction=0.5, neg_pos_ub=-1, add_gt_as_proposals=False), allowed_border=-1, pos_weight=-1, debug=False), rpn_proposal=dict(nms_pre=2000, max_per_img=1000, nms=dict(type='nms', iou_threshold=0.7), min_bbox_size=0), rcnn=dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.5, neg_iou_thr=0.5, min_pos_iou=0.5, match_low_quality=False, ignore_iof_thr=-1), sampler=dict(type='RandomSampler', num=512, pos_fraction=0.25, neg_pos_ub=-1, add_gt_as_proposals=True), pos_weight=-1, debug=False)), test_cfg=dict( rpn=dict(nms_pre=1000, max_per_img=1000, nms=dict(type='nms', iou_threshold=0.7), min_bbox_size=0), rcnn=dict(score_thr=0.05, nms=dict(type='nms', iou_threshold=0.5), max_per_img=100) )) # RUNTIME default_scope = 'mmdet' default_hooks = dict( timer=dict(type='IterTimerHook'), logger=dict(type='LoggerHook', interval=50), param_scheduler=dict(type='ParamSchedulerHook'), checkpoint=dict(type='CheckpointHook', interval=1), sampler_seed=dict(type='DistSamplerSeedHook'), visualization=dict(type='DetVisualizationHook')) env_cfg = dict( cudnn_benchmark=False, mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0), dist_cfg=dict(backend='nccl'), ) vis_backends = [dict(type='LocalVisBackend')] visualizer = dict(type='DetLocalVisualizer', vis_backends=vis_backends, name='visualizer') log_processor = dict(type='LogProcessor', window_size=50, by_epoch=True) log_level = 'INFO' load_from = None resume = False # SCHEDULE # training schedule for 1x train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=num_epochs, val_interval=1) val_cfg = dict(type='ValLoop') test_cfg = dict(type='TestLoop') # learning rate param_scheduler = [ dict(type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500), dict(type='MultiStepLR', begin=0, end=12, by_epoch=True, milestones=[8, 11], gamma=0.1) ] # optimizer optim_wrapper = dict(type='OptimWrapper', optimizer=dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001)) auto_scale_lr = dict(enable=False, base_batch_size=16)