justheuristic commited on
Commit
618fe07
1 Parent(s): 8a8b4d9

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +4 -4
README.md CHANGED
@@ -10,19 +10,19 @@ tags:
10
  ---
11
 
12
  An official quantization of [meta-llama/Llama-2-7b](https://huggingface.co/meta-llama/Llama-2-7b) using [PV-Tuning](https://arxiv.org/abs/2405.14852) on top of [AQLM](https://arxiv.org/abs/2401.06118).
 
13
 
14
-
15
- For this quantization, we used 1 codebook of 16 bits for groups of 8 weights.
16
 
17
 
18
  | Model | AQLM scheme | WikiText 2 PPL | Model size, Gb | Hub link |
19
  |------------|-------------|----------------|----------------|--------------------------------------------------------------------------|
20
- | Llama-2-7b (this) | 1x16 | 5.68 | 2.4 | [Link](https://huggingface.co/ISTA-DASLab/Llama-2-7b-AQLM-PV-2Bit-1x16-hf) |
21
  | Llama-2-7b | 2x8 | 5.90 | 2.2 | [Link](https://huggingface.co/ISTA-DASLab/Llama-2-7b-AQLM-PV-2Bit-2x8-hf) |
 
22
  | Llama-2-13b| 1x16 | 5.05 | 4.1 | [Link](https://huggingface.co/ISTA-DASLab/Llama-2-13b-AQLM-PV-2Bit-1x16-hf)|
23
  | Llama-2-70b| 1x16 | 3.78 | 18.8 | [Link](https://huggingface.co/ISTA-DASLab/Llama-2-70b-AQLM-PV-2Bit-1x16-hf)|
24
 
25
- The 1x16g16 (1-bit) models are on the way, as soon as we update the inference lib with their respective kernels.
26
 
27
  To learn more about the inference, as well as the information on how to quantize models yourself, please refer to the [official GitHub repo](https://github.com/Vahe1994/AQLM).
28
  The original code for PV-Tuning can be found in the [AQLM@pv-tuning](https://github.com/Vahe1994/AQLM/tree/pv-tuning) branch.
 
10
  ---
11
 
12
  An official quantization of [meta-llama/Llama-2-7b](https://huggingface.co/meta-llama/Llama-2-7b) using [PV-Tuning](https://arxiv.org/abs/2405.14852) on top of [AQLM](https://arxiv.org/abs/2401.06118).
13
+ For this quantization, we used 1 codebook of 16 bits for groups of 16 weights, totalling about 1.58 bits per weight.
14
 
15
+ __The 1x16g16 models require aqlm inference library v1.1.6 or newer:__ `pip install aqlm[gpu,cpu]>=1.1.6`
 
16
 
17
 
18
  | Model | AQLM scheme | WikiText 2 PPL | Model size, Gb | Hub link |
19
  |------------|-------------|----------------|----------------|--------------------------------------------------------------------------|
20
+ | Llama-2-7b | 1x16 | 5.68 | 2.4 | [Link](https://huggingface.co/ISTA-DASLab/Llama-2-7b-AQLM-PV-2Bit-1x16-hf) |
21
  | Llama-2-7b | 2x8 | 5.90 | 2.2 | [Link](https://huggingface.co/ISTA-DASLab/Llama-2-7b-AQLM-PV-2Bit-2x8-hf) |
22
+ | Llama-2-7b (this) | 1x16g16 | 9.21 | 1.7 | [Link](https://huggingface.co/justheuristic/Llama-2-7b-AQLM-PV-1Bit-1x16-hf) |
23
  | Llama-2-13b| 1x16 | 5.05 | 4.1 | [Link](https://huggingface.co/ISTA-DASLab/Llama-2-13b-AQLM-PV-2Bit-1x16-hf)|
24
  | Llama-2-70b| 1x16 | 3.78 | 18.8 | [Link](https://huggingface.co/ISTA-DASLab/Llama-2-70b-AQLM-PV-2Bit-1x16-hf)|
25
 
 
26
 
27
  To learn more about the inference, as well as the information on how to quantize models yourself, please refer to the [official GitHub repo](https://github.com/Vahe1994/AQLM).
28
  The original code for PV-Tuning can be found in the [AQLM@pv-tuning](https://github.com/Vahe1994/AQLM/tree/pv-tuning) branch.