justheuristic
commited on
Commit
•
618fe07
1
Parent(s):
8a8b4d9
Update README.md
Browse files
README.md
CHANGED
@@ -10,19 +10,19 @@ tags:
|
|
10 |
---
|
11 |
|
12 |
An official quantization of [meta-llama/Llama-2-7b](https://huggingface.co/meta-llama/Llama-2-7b) using [PV-Tuning](https://arxiv.org/abs/2405.14852) on top of [AQLM](https://arxiv.org/abs/2401.06118).
|
|
|
13 |
|
14 |
-
|
15 |
-
For this quantization, we used 1 codebook of 16 bits for groups of 8 weights.
|
16 |
|
17 |
|
18 |
| Model | AQLM scheme | WikiText 2 PPL | Model size, Gb | Hub link |
|
19 |
|------------|-------------|----------------|----------------|--------------------------------------------------------------------------|
|
20 |
-
| Llama-2-7b
|
21 |
| Llama-2-7b | 2x8 | 5.90 | 2.2 | [Link](https://huggingface.co/ISTA-DASLab/Llama-2-7b-AQLM-PV-2Bit-2x8-hf) |
|
|
|
22 |
| Llama-2-13b| 1x16 | 5.05 | 4.1 | [Link](https://huggingface.co/ISTA-DASLab/Llama-2-13b-AQLM-PV-2Bit-1x16-hf)|
|
23 |
| Llama-2-70b| 1x16 | 3.78 | 18.8 | [Link](https://huggingface.co/ISTA-DASLab/Llama-2-70b-AQLM-PV-2Bit-1x16-hf)|
|
24 |
|
25 |
-
The 1x16g16 (1-bit) models are on the way, as soon as we update the inference lib with their respective kernels.
|
26 |
|
27 |
To learn more about the inference, as well as the information on how to quantize models yourself, please refer to the [official GitHub repo](https://github.com/Vahe1994/AQLM).
|
28 |
The original code for PV-Tuning can be found in the [AQLM@pv-tuning](https://github.com/Vahe1994/AQLM/tree/pv-tuning) branch.
|
|
|
10 |
---
|
11 |
|
12 |
An official quantization of [meta-llama/Llama-2-7b](https://huggingface.co/meta-llama/Llama-2-7b) using [PV-Tuning](https://arxiv.org/abs/2405.14852) on top of [AQLM](https://arxiv.org/abs/2401.06118).
|
13 |
+
For this quantization, we used 1 codebook of 16 bits for groups of 16 weights, totalling about 1.58 bits per weight.
|
14 |
|
15 |
+
__The 1x16g16 models require aqlm inference library v1.1.6 or newer:__ `pip install aqlm[gpu,cpu]>=1.1.6`
|
|
|
16 |
|
17 |
|
18 |
| Model | AQLM scheme | WikiText 2 PPL | Model size, Gb | Hub link |
|
19 |
|------------|-------------|----------------|----------------|--------------------------------------------------------------------------|
|
20 |
+
| Llama-2-7b | 1x16 | 5.68 | 2.4 | [Link](https://huggingface.co/ISTA-DASLab/Llama-2-7b-AQLM-PV-2Bit-1x16-hf) |
|
21 |
| Llama-2-7b | 2x8 | 5.90 | 2.2 | [Link](https://huggingface.co/ISTA-DASLab/Llama-2-7b-AQLM-PV-2Bit-2x8-hf) |
|
22 |
+
| Llama-2-7b (this) | 1x16g16 | 9.21 | 1.7 | [Link](https://huggingface.co/justheuristic/Llama-2-7b-AQLM-PV-1Bit-1x16-hf) |
|
23 |
| Llama-2-13b| 1x16 | 5.05 | 4.1 | [Link](https://huggingface.co/ISTA-DASLab/Llama-2-13b-AQLM-PV-2Bit-1x16-hf)|
|
24 |
| Llama-2-70b| 1x16 | 3.78 | 18.8 | [Link](https://huggingface.co/ISTA-DASLab/Llama-2-70b-AQLM-PV-2Bit-1x16-hf)|
|
25 |
|
|
|
26 |
|
27 |
To learn more about the inference, as well as the information on how to quantize models yourself, please refer to the [official GitHub repo](https://github.com/Vahe1994/AQLM).
|
28 |
The original code for PV-Tuning can be found in the [AQLM@pv-tuning](https://github.com/Vahe1994/AQLM/tree/pv-tuning) branch.
|