--- library_name: transformers tags: - llama - facebook - meta - llama-2 - conversational - text-generation-inference --- An official quantization of [meta-llama/Llama-2-7b](https://huggingface.co/meta-llama/Llama-2-7b) using [PV-Tuning](https://arxiv.org/abs/2405.14852) on top of [AQLM](https://arxiv.org/abs/2401.06118). For this quantization, we used 1 codebook of 16 bits for groups of 16 weights, totalling about 1.58 bits per weight. __The 1x16g16 models require aqlm inference library v1.1.6 or newer:__ `pip install aqlm[gpu,cpu]>=1.1.6` | Model | AQLM scheme | WikiText 2 PPL | Model size, Gb | Hub link | |------------|-------------|----------------|----------------|--------------------------------------------------------------------------| | Llama-2-7b | 1x16 | 5.68 | 2.4 | [Link](https://huggingface.co/ISTA-DASLab/Llama-2-7b-AQLM-PV-2Bit-1x16-hf) | | Llama-2-7b | 2x8 | 5.90 | 2.2 | [Link](https://huggingface.co/ISTA-DASLab/Llama-2-7b-AQLM-PV-2Bit-2x8-hf) | | Llama-2-7b (this) | 1x16g16 | 9.21 | 1.7 | [Link](https://huggingface.co/justheuristic/Llama-2-7b-AQLM-PV-1Bit-1x16-hf) | | Llama-2-13b| 1x16 | 5.05 | 4.1 | [Link](https://huggingface.co/ISTA-DASLab/Llama-2-13b-AQLM-PV-2Bit-1x16-hf)| | Llama-2-70b| 1x16 | 3.78 | 18.8 | [Link](https://huggingface.co/ISTA-DASLab/Llama-2-70b-AQLM-PV-2Bit-1x16-hf)| To learn more about the inference, as well as the information on how to quantize models yourself, please refer to the [official GitHub repo](https://github.com/Vahe1994/AQLM). The original code for PV-Tuning can be found in the [AQLM@pv-tuning](https://github.com/Vahe1994/AQLM/tree/pv-tuning) branch.