justheuristic
commited on
Commit
•
197ab00
1
Parent(s):
ee14737
Update README.md
Browse files
README.md
CHANGED
@@ -11,14 +11,18 @@ tags:
|
|
11 |
|
12 |
An official quantization of [meta-llama/Meta-Llama-3-70B](https://huggingface.co/meta-llama/Meta-Llama-3-70B) using [PV-Tuning](https://arxiv.org/abs/2405.14852) on top of [AQLM](https://arxiv.org/abs/2401.06118) .
|
13 |
|
14 |
-
For this quantization, we used 1 codebook of 16 bits for groups of
|
|
|
|
|
|
|
15 |
|
16 |
|
17 |
| Model | AQLM scheme | WikiText 2 PPL | Model size, Gb | Hub link |
|
18 |
|------------|-------------|----------------|----------------|--------------------------------------------------------------------------|
|
19 |
| meta-llama/Meta-Llama-3-8B | 1x16g8 | 6.99 | 4.1 | [Link](https://huggingface.co/ISTA-DASLab/Meta-Llama-3-8B-AQLM-PV-2Bit-1x16) |
|
20 |
| meta-llama/Meta-Llama-3-8B | 1x16g16 | 9.43 | 3.9 | [Link](https://huggingface.co/ISTA-DASLab/Meta-Llama-3-8B-AQLM-PV-1Bit-1x16) |
|
21 |
-
| meta-llama/Meta-Llama-3-70B
|
|
|
22 |
|
23 |
To learn more about the inference, as well as the information on how to quantize models yourself, please refer to the [official GitHub repo](https://github.com/Vahe1994/AQLM).
|
24 |
The original code for PV-Tuning can be found in the [AQLM@pv-tuning](https://github.com/Vahe1994/AQLM/tree/pv-tuning) branch.
|
|
|
11 |
|
12 |
An official quantization of [meta-llama/Meta-Llama-3-70B](https://huggingface.co/meta-llama/Meta-Llama-3-70B) using [PV-Tuning](https://arxiv.org/abs/2405.14852) on top of [AQLM](https://arxiv.org/abs/2401.06118) .
|
13 |
|
14 |
+
For this quantization, we used 1 codebook of 16 bits for groups of 16 weights.
|
15 |
+
**The 1x16g16 models require aqlm inference library v1.1.6 or newer:**
|
16 |
+
|
17 |
+
`pip install aqlm[gpu,cpu]>=1.1.6`
|
18 |
|
19 |
|
20 |
| Model | AQLM scheme | WikiText 2 PPL | Model size, Gb | Hub link |
|
21 |
|------------|-------------|----------------|----------------|--------------------------------------------------------------------------|
|
22 |
| meta-llama/Meta-Llama-3-8B | 1x16g8 | 6.99 | 4.1 | [Link](https://huggingface.co/ISTA-DASLab/Meta-Llama-3-8B-AQLM-PV-2Bit-1x16) |
|
23 |
| meta-llama/Meta-Llama-3-8B | 1x16g16 | 9.43 | 3.9 | [Link](https://huggingface.co/ISTA-DASLab/Meta-Llama-3-8B-AQLM-PV-1Bit-1x16) |
|
24 |
+
| meta-llama/Meta-Llama-3-70B | 1x16g8 | 4.57 | 21.9 | [Link](https://huggingface.co/ISTA-DASLab/Meta-Llama-3-70B-AQLM-PV-2Bit-1x16)|
|
25 |
+
| meta-llama/Meta-Llama-3-70B (this) | 1x16g16 | 8.67 | 13 | [Link](https://huggingface.co/ISTA-DASLab/Meta-Llama-3-70B-AQLM-PV-2Bit-1x16)|
|
26 |
|
27 |
To learn more about the inference, as well as the information on how to quantize models yourself, please refer to the [official GitHub repo](https://github.com/Vahe1994/AQLM).
|
28 |
The original code for PV-Tuning can be found in the [AQLM@pv-tuning](https://github.com/Vahe1994/AQLM/tree/pv-tuning) branch.
|