justheuristic commited on
Commit
197ab00
1 Parent(s): ee14737

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +6 -2
README.md CHANGED
@@ -11,14 +11,18 @@ tags:
11
 
12
  An official quantization of [meta-llama/Meta-Llama-3-70B](https://huggingface.co/meta-llama/Meta-Llama-3-70B) using [PV-Tuning](https://arxiv.org/abs/2405.14852) on top of [AQLM](https://arxiv.org/abs/2401.06118) .
13
 
14
- For this quantization, we used 1 codebook of 16 bits for groups of 8 weights.
 
 
 
15
 
16
 
17
  | Model | AQLM scheme | WikiText 2 PPL | Model size, Gb | Hub link |
18
  |------------|-------------|----------------|----------------|--------------------------------------------------------------------------|
19
  | meta-llama/Meta-Llama-3-8B | 1x16g8 | 6.99 | 4.1 | [Link](https://huggingface.co/ISTA-DASLab/Meta-Llama-3-8B-AQLM-PV-2Bit-1x16) |
20
  | meta-llama/Meta-Llama-3-8B | 1x16g16 | 9.43 | 3.9 | [Link](https://huggingface.co/ISTA-DASLab/Meta-Llama-3-8B-AQLM-PV-1Bit-1x16) |
21
- | meta-llama/Meta-Llama-3-70B (this) | 1x16g8 | 4.57 | 21.9 | [Link](https://huggingface.co/ISTA-DASLab/Meta-Llama-3-70B-AQLM-PV-2Bit-1x16)|
 
22
 
23
  To learn more about the inference, as well as the information on how to quantize models yourself, please refer to the [official GitHub repo](https://github.com/Vahe1994/AQLM).
24
  The original code for PV-Tuning can be found in the [AQLM@pv-tuning](https://github.com/Vahe1994/AQLM/tree/pv-tuning) branch.
 
11
 
12
  An official quantization of [meta-llama/Meta-Llama-3-70B](https://huggingface.co/meta-llama/Meta-Llama-3-70B) using [PV-Tuning](https://arxiv.org/abs/2405.14852) on top of [AQLM](https://arxiv.org/abs/2401.06118) .
13
 
14
+ For this quantization, we used 1 codebook of 16 bits for groups of 16 weights.
15
+ **The 1x16g16 models require aqlm inference library v1.1.6 or newer:**
16
+
17
+ `pip install aqlm[gpu,cpu]>=1.1.6`
18
 
19
 
20
  | Model | AQLM scheme | WikiText 2 PPL | Model size, Gb | Hub link |
21
  |------------|-------------|----------------|----------------|--------------------------------------------------------------------------|
22
  | meta-llama/Meta-Llama-3-8B | 1x16g8 | 6.99 | 4.1 | [Link](https://huggingface.co/ISTA-DASLab/Meta-Llama-3-8B-AQLM-PV-2Bit-1x16) |
23
  | meta-llama/Meta-Llama-3-8B | 1x16g16 | 9.43 | 3.9 | [Link](https://huggingface.co/ISTA-DASLab/Meta-Llama-3-8B-AQLM-PV-1Bit-1x16) |
24
+ | meta-llama/Meta-Llama-3-70B | 1x16g8 | 4.57 | 21.9 | [Link](https://huggingface.co/ISTA-DASLab/Meta-Llama-3-70B-AQLM-PV-2Bit-1x16)|
25
+ | meta-llama/Meta-Llama-3-70B (this) | 1x16g16 | 8.67 | 13 | [Link](https://huggingface.co/ISTA-DASLab/Meta-Llama-3-70B-AQLM-PV-2Bit-1x16)|
26
 
27
  To learn more about the inference, as well as the information on how to quantize models yourself, please refer to the [official GitHub repo](https://github.com/Vahe1994/AQLM).
28
  The original code for PV-Tuning can be found in the [AQLM@pv-tuning](https://github.com/Vahe1994/AQLM/tree/pv-tuning) branch.