password_strength / pass_str.py
IbraheemAlquraishy's picture
web app
1a3c576
import pandas as pd
import numpy as np
import getpass
import joblib
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
def word(password):
character=[]
for i in password:
character.append(i)
return character
def new():
x = np.array(data["password"])
y = np.array(data["strength"])
tdif = TfidfVectorizer(tokenizer=word)
x = tdif.fit_transform(x)
xtrain, xtest, ytrain, ytest = train_test_split(x, y, test_size=0.05, random_state=42)
x = np.array(data["password"])
y = np.array(data["strength"])
tdif = TfidfVectorizer(tokenizer=word)
x = tdif.fit_transform(x)
joblib.dump(tdif,"tdif.joblib")
model = RandomForestClassifier()
model.fit(xtrain, ytrain)
joblib.dump(model, "passmodel.joblib")
def load():
m=joblib.load("passmodel.joblib")
td=joblib.load("tdif.joblib")
return m,td
def test(i,m,td):
data = td.transform([str(i)])
output = m.predict(data)
return output