--- library_name: transformers license: apache-2.0 base_model: sshleifer/distilbart-cnn-12-6 tags: - generated_from_trainer metrics: - rouge model-index: - name: dataset_summarize results: [] --- # dataset_summarize This model is a fine-tuned version of [sshleifer/distilbart-cnn-12-6](https://huggingface.co/sshleifer/distilbart-cnn-12-6) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 4.3402 - Rouge1: 0.2705 - Rouge2: 0.0363 - Rougel: 0.1609 - Rougelsum: 0.1609 - Generated Length: 113.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Generated Length | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:----------------:| | No log | 1.0 | 1 | 5.0242 | 0.2692 | 0.0362 | 0.1676 | 0.1676 | 83.5 | | No log | 2.0 | 2 | 4.5236 | 0.2629 | 0.0251 | 0.1431 | 0.1431 | 96.5 | | No log | 3.0 | 3 | 4.3402 | 0.2705 | 0.0363 | 0.1609 | 0.1609 | 113.0 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 3.0.0 - Tokenizers 0.19.1