File size: 16,695 Bytes
2f1c431
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    Policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Features extractor to use.\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fcc15446b80>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fcc15446c10>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fcc15446ca0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fcc15446d30>", "_build": "<function ActorCriticPolicy._build at 0x7fcc15446dc0>", "forward": "<function ActorCriticPolicy.forward at 0x7fcc15446e50>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fcc15446ee0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fcc15446f70>", "_predict": "<function ActorCriticPolicy._predict at 0x7fcc1544c040>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fcc1544c0d0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fcc1544c160>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fcc1544c1f0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fcc15447270>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 64, "num_timesteps": 2097152, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1675885806135840000, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV+QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMYy9Vc2Vycy9pZ29yL29wdC9hbmFjb25kYTMvZW52cy9weTM4cmwvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMYy9Vc2Vycy9pZ29yL29wdC9hbmFjb25kYTMvZW52cy9weTM4cmwvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQgAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYACAAAAAAAAGaV6Lw96iS5Wi2WO3ICmDjCZHg7szrauQAAgD8AAIA/M71EvXv6lrqZApA7TmQEOKjXOrmKSvi2AACAPwAAgD+aJRg8H63yuYrryLuGUZo3KuSyuoYq7bYAAIA/AACAPwASF7yPji26FjtZOvc0WzU/DEg6Tld9uQAAgD8AAIA/mrlyvI8+aLre2nI6sAWEtcnMRjunsYy5AACAPwAAgD/NB8Y8ygM3PtJAAr4FvJ6+DJV7vD1uUb0AAAAAAAAAAABo77x7Xpy6qEmCs5yNFrDqL986tBLMMwAAgD8AAIA/M9uTvOFsmbpqic84Uo0CNXVRFzo6BOIzAACAPwAAgD9mVUm9jzZzukDSejmlTsg0jSCGOkJcjrgAAIA/AACAP5pSmrwUDqW4rKWzupHXajyUGuW7/CXMugAAgD8AAIA/M7NVOsNZCbrbXJC6gKXCNa9wZjofKKg5AACAPwAAgD/mdxi9H+3fuerwtzuy/rA3r/d7OjM+8zQAAIA/AACAPzMGmr3DJVW6yK2WOtoxvzXvAA47CP+suQAAgD8AAIA/zVqHPFzfPrrOASo4XD4LM/Y/FjvuOUm3AACAPwAAgD+aqo689kwRupOE5jrHlx022Yl0OQh9BLoAAIA/AACAP9pOwr1cmxm6q7jmO1n+PLasGq+7hmk8tQAAgD8AAIA/mkqQPOE62rjKSb07DTeXOJyTZzuywlu5AACAPwAAgD/NGpe8H4XDudEnkLr/0T65tO0Nu74EsDkAAIA/AACAPzNr/ztIaYe6YMsbOg0sjzb1gAc7OawwuQAAgD8AAIA/mpwKveH8k7r6HQq60C8rOcHUObuSoAs5AACAPwAAgD8aYTO9e2CRuvI2P7jayIez9PMDO+B7XzcAAIA/AACAP2Ym+rtc01a6vohmOlsAODbzQ4S5E1SGuQAAgD8AAIA/AHw5vAo3T7knPLi71lDwNyoSG7tjT7q2AACAPwAAgD8AmnA8KdBqupBBbDgiRaQzYxMtuoxFibcAAIA/AACAP2bMpDyFK/i5PmHiOgms7TW/XG27p0YEugAAgD8AAIA/Tf8wvY9uBbqmi9i6jxzttQDcqLqOPPc5AACAPwAAgD+aVes8PUphuXZwjTozRJM1+/GBOypKpLkAAIA/AACAP+bYWT1cq2C6Tu1jugtcdrbpa5k5iwiDOQAAgD8AAIA/MyP4vfbskj+6cb++VfHsvu5nar75wUO+AAAAAAAAAAAA2bq97Jm/uW592zoADmI06NGMu9qw/7kAAIA/AACAP1qQg73XNTq7wh4vO3Tlujyp8Gi8gtmePQAAgD8AAIA/mlkJPQp+dj52tJ2+Y+urvif0Nr5AZyW+AAAAAAAAAACaRVm9PRpVuan6GjqF1Jc10zfhulYDObkAAIA/AACAP3PqvL1SIP+5SNDrupym67XkpHe53/AKOgAAgD8AAIA/WpzYvSc3SD9od6K9migev5aOqb0pVEW9AAAAAAAAAAAzgTq8uC6uuWR+SzlVeTG2PrgFO/UTbLgAAIA/AACAP5r9+7vhkIG6bRtrujnSqjwqCbA6kMGTvQAAgD8AAIA/87GEvthcGz9hzL+9zsshv/W1877yvai9AAAAAAAAAACaPJe8KUBzussBfzkzLeczPT0KueAok7gAAIA/AACAP/MKjr0pOFS6v+O4OUTr6bUhW2O7K6fZuAAAgD8AAIA/ALkGveHmhbqCgYM7zoPJOBKFeDvCmpe6AACAPwAAgD9N1I69rvuNumXscjtKBoM2GZgIuwBjjLoAAIA/AACAP/PpoL09aj65jKGROZbomTRIpoK7tmepuAAAgD8AAIA/zQsDvRT0i7pgOuO6f7KRtiz8TjtrHAE6AACAPwAAgD8Absu813MjuWVx5rrOoVW2khm4ucZJBzoAAIA/AACAPwCvhLxOvrw/Qn4KvsV//D29B7y8PXSmvQAAAAAAAAAAzXSAu0jHtro6Udg64rLcNcmSfDkwova5AACAPwAAgD960YS+DG8xP3jIQD42Rd6+cNZ1vmUUUD4AAAAAAAAAAJpfar3OALs/+vKVvqWc5b182gG+wLb7vQAAAAAAAAAAmmk7O1zLXrpgcOe6XA0JtjkdBbpSTQM6AACAPwAAgD9megy87CHCuXO2wDt1vyY2zF4nu5ZxIDUAAIA/AACAP000C732lGK6jnz3OQd37jUzUqs6BWkMuQAAgD8AAIA/MzDBvBRgg7pc7pu6XIqLtYAc5rnycrQ5AACAPwAAgD/NsJC7j/JiutBgYrxk6p62RBX3uv2tDjYAAIA/AACAP80SDb0pYFy6QohSvMOJJr1slJA7XvklPQAAAAAAAAAAM8jFPMN9P7rXm5G7g/fztgeseTuh2ag6AACAPwAAgD+zvUy9rgeAOdt7WrqNhEk7lFQjO/rjXj0AAAAAAAAAAMDOnb17JqS6WtmSOwY/SDi4/gi6kdqpuAAAgD8AAIA/AEkYva4Hnbh7vVE6xJUTNnNEortKUXW5AACAPwAAgD9mEUm99iRRuuottzjLU0O2B0xfO7Odz7cAAIA/AACAP2a2Hz171Iy6iHzjOYwoAjVkN+Y67K0DuQAAgD8AAIA/TWByva6npbg9wA67n+WStmVB1bp3gQo2AACAPwAAgD9N6GS9SM+3ugshG7q334U0BjU6ujoRMTkAAIA/AACAP2aATDwfXfq5EgRRtqCLhbEjVkY7CkB/NQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYktASwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVswAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiS0CFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.04857599999999995, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMINExtqQNrckCUhpRSlIwBbJRNlwOMAXSUR0ChOGxjz7MxdX2UKGgGaAloD0MIsI14shu9ZUCUhpRSlGgVTegDaBZHQKE4ruMuOCJ1fZQoaAZoCWgPQwipaKz9HTJkQJSGlFKUaBVN6ANoFkdAoTjvbKzRhXV9lChoBmgJaA9DCHB87ZmlrGRAlIaUUpRoFU3oA2gWR0ChOszeGfwrdX2UKGgGaAloD0MI96xrtBwlYkCUhpRSlGgVTegDaBZHQKE7bkS26TZ1fZQoaAZoCWgPQwjtRElIpBRmQJSGlFKUaBVN6ANoFkdAoTxCf4AS4HV9lChoBmgJaA9DCGQ6dHpe3GJAlIaUUpRoFU3oA2gWR0ChPT8cU/OddX2UKGgGaAloD0MIPdNLjGUcc0CUhpRSlGgVS+xoFkdAoT5T1schknV9lChoBmgJaA9DCHSV7q4zhWJAlIaUUpRoFU3oA2gWR0ChQBnxri2ldX2UKGgGaAloD0MILeqT3GGSXkCUhpRSlGgVTegDaBZHQKFAL3yqdYp1fZQoaAZoCWgPQwixicxc4IthQJSGlFKUaBVN6ANoFkdAoUHvoPkJbHV9lChoBmgJaA9DCNRIS+Xtt2ZAlIaUUpRoFU3oA2gWR0ChQmHf/FR6dX2UKGgGaAloD0MIuOUjKekBZUCUhpRSlGgVTegDaBZHQKFC1Hd43WF1fZQoaAZoCWgPQwjUX6+wYAJgQJSGlFKUaBVN6ANoFkdAoUXPiPyTZHV9lChoBmgJaA9DCHhgAOHDPGVAlIaUUpRoFU3oA2gWR0ChR5YUeuFIdX2UKGgGaAloD0MIRML3/oYHZkCUhpRSlGgVTegDaBZHQKFH8SeRPoF1fZQoaAZoCWgPQwh002achilkQJSGlFKUaBVN6ANoFkdAoUgzdFfAsXV9lChoBmgJaA9DCOWXwRgRdmdAlIaUUpRoFU3oA2gWR0ChSU+x4Y78dX2UKGgGaAloD0MI09heC/oRZECUhpRSlGgVTegDaBZHQKFJlXYDklx1fZQoaAZoCWgPQwi1cFmFTednQJSGlFKUaBVN6ANoFkdAoUydxjriVHV9lChoBmgJaA9DCBu8r8qFjmJAlIaUUpRoFU3oA2gWR0ChTVnBUJfIdX2UKGgGaAloD0MISYYcW8+XYkCUhpRSlGgVTegDaBZHQKFQE/47A+J1fZQoaAZoCWgPQwg4E9OFWF5iQJSGlFKUaBVN6ANoFkdAoVCwuoP07XV9lChoBmgJaA9DCP/sR4rIBmVAlIaUUpRoFU3oA2gWR0ChUtu+ZgG9dX2UKGgGaAloD0MIZk8Cm/MsZ0CUhpRSlGgVTegDaBZHQKFUD3fyf+V1fZQoaAZoCWgPQwgL7gc8MEFoQJSGlFKUaBVN6ANoFkdAoVZgBLf1pXV9lChoBmgJaA9DCLx4P24/VWBAlIaUUpRoFU3oA2gWR0ChVzi2MKkVdX2UKGgGaAloD0MIfQOTG8VfZECUhpRSlGgVTegDaBZHQKFY5GSZBs11fZQoaAZoCWgPQwhlwi/1c3ZjQJSGlFKUaBVN6ANoFkdAoVl147ihnXV9lChoBmgJaA9DCOhrlstGbWNAlIaUUpRoFU3oA2gWR0ChXA66z3RHdX2UKGgGaAloD0MIGoaPiKnKZECUhpRSlGgVTegDaBZHQKFctLV4HHF1fZQoaAZoCWgPQwg5Q3HHG0dgQJSGlFKUaBVN6ANoFkdAoV1w6ySmqHV9lChoBmgJaA9DCHIW9rRDYGRAlIaUUpRoFU3oA2gWR0ChXgW7nPmgdX2UKGgGaAloD0MIf6SIDCtHYECUhpRSlGgVTegDaBZHQKFe7HpbD/F1fZQoaAZoCWgPQwhqaW6FMPNmQJSGlFKUaBVN6ANoFkdAoV8CIpH7QHV9lChoBmgJaA9DCM7+QLntIWhAlIaUUpRoFU3oA2gWR0ChXylWXC0odX2UKGgGaAloD0MIbVUS2QcrZECUhpRSlGgVTegDaBZHQKFfhollbvB1fZQoaAZoCWgPQwj+CwQBsmBgQJSGlFKUaBVN6ANoFkdAoV/6f8MuvnV9lChoBmgJaA9DCHIVi98UPGVAlIaUUpRoFU3oA2gWR0ChYPzU7Sy/dX2UKGgGaAloD0MIYVW9/M6lbkCUhpRSlGgVTeoCaBZHQKFhnM5fdAR1fZQoaAZoCWgPQwh5AfbRKbVgQJSGlFKUaBVN6ANoFkdAoWIb9ETg23V9lChoBmgJaA9DCHmsGRlkLWNAlIaUUpRoFU3oA2gWR0ChYlM1baAXdX2UKGgGaAloD0MIvf+PEyZFYkCUhpRSlGgVTegDaBZHQKFieO/+Kj11fZQoaAZoCWgPQwjUEFX4Mz1kQJSGlFKUaBVN6ANoFkdAoWQLfek563V9lChoBmgJaA9DCPUsCOV9/mBAlIaUUpRoFU3oA2gWR0ChZHE9dNWVdX2UKGgGaAloD0MI7nw/Nd7RYkCUhpRSlGgVTegDaBZHQKFl5G4I8hd1fZQoaAZoCWgPQwi86gHzEMhgQJSGlFKUaBVN6ANoFkdAoWbYeaKDTXV9lChoBmgJaA9DCF9AL9y5/2JAlIaUUpRoFU3oA2gWR0ChZyIxgy/LdX2UKGgGaAloD0MIelImNbREY0CUhpRSlGgVTegDaBZHQKFoa+hXbM51fZQoaAZoCWgPQwhntcAeE25fQJSGlFKUaBVN6ANoFkdAoWmCBshxHXV9lChoBmgJaA9DCNl6hnBMUGNAlIaUUpRoFU3oA2gWR0ChbHgwXZXddX2UKGgGaAloD0MIP49RnvnOcUCUhpRSlGgVTRUBaBZHQKFux8Yyfth1fZQoaAZoCWgPQwg0R1Z+GfdlQJSGlFKUaBVN6ANoFkdAoW7ZKFqSHXV9lChoBmgJaA9DCAddwqE3VGVAlIaUUpRoFU3oA2gWR0Chbv5VfeDWdX2UKGgGaAloD0MI9RQ5RFzYZkCUhpRSlGgVTegDaBZHQKFvMSElE7Z1fZQoaAZoCWgPQwhaKm9HuPFnQJSGlFKUaBVN6ANoFkdAoXBtt8/lhnV9lChoBmgJaA9DCJoF2h1SIGVAlIaUUpRoFU3oA2gWR0ChcnzDO1OTdX2UKGgGaAloD0MI0XR2MjgSYkCUhpRSlGgVTegDaBZHQKFz+R5kbxV1fZQoaAZoCWgPQwgMlBRYAH1gQJSGlFKUaBVN6ANoFkdAoXU3aYeDF3V9lChoBmgJaA9DCElHOZjNb2dAlIaUUpRoFU3oA2gWR0Chd73d9Dx9dX2UKGgGaAloD0MIJvxSP28EaECUhpRSlGgVTegDaBZHQKF30weNkvt1fZQoaAZoCWgPQwiOXDelvKJhQJSGlFKUaBVN6ANoFkdAoXf3PZ7HAHV9lChoBmgJaA9DCM07TtERI2VAlIaUUpRoFU3oA2gWR0CheUDhcZ+AdX2UKGgGaAloD0MI5SoWvynnaUCUhpRSlGgVTegDaBZHQKF52iAUcn51fZQoaAZoCWgPQwhXe9gLhfNmQJSGlFKUaBVN6ANoFkdAoXoyqyWzGHV9lChoBmgJaA9DCD8Cf/j550jAlIaUUpRoFU2nAWgWR0Che4N78ejmdX2UKGgGaAloD0MIGxNiLikFYkCUhpRSlGgVTegDaBZHQKF8GdUbT+h1fZQoaAZoCWgPQwhe2JqtvDZjQJSGlFKUaBVN6ANoFkdAoXxc0SAYpHV9lChoBmgJaA9DCM1WXvK/LGFAlIaUUpRoFU3oA2gWR0ChfKAzYVZcdX2UKGgGaAloD0MI1PIDV3nRZECUhpRSlGgVTegDaBZHQKF+V238XN11fZQoaAZoCWgPQwh7Z7RVyb9kQJSGlFKUaBVN6ANoFkdAoX8ClrM1THV9lChoBmgJaA9DCNkiaTd6hWdAlIaUUpRoFU3oA2gWR0Chf9mZmZmadX2UKGgGaAloD0MIcO8a9KWnZkCUhpRSlGgVTegDaBZHQKGA26GxlhB1fZQoaAZoCWgPQwiNz2T/PPplQJSGlFKUaBVN6ANoFkdAoYHx6KLsKXV9lChoBmgJaA9DCEz/klSmwWVAlIaUUpRoFU3oA2gWR0Chg62saKk3dX2UKGgGaAloD0MIZVBtcCKLXkCUhpRSlGgVTegDaBZHQKGDwjtXxON1fZQoaAZoCWgPQwgQAvIl1IJkQJSGlFKUaBVN6ANoFkdAoYVp3kgfVHV9lChoBmgJaA9DCGwGuCDb7WVAlIaUUpRoFU3oA2gWR0Chhdx3eN1hdX2UKGgGaAloD0MI/1nz469mY0CUhpRSlGgVTegDaBZHQKGGURT0g8t1fZQoaAZoCWgPQwjcDg2LUYhQQJSGlFKUaBVLkWgWR0ChiEyJKraNdX2UKGgGaAloD0MIpABRMGMTYECUhpRSlGgVTegDaBZHQKGJVVU+9rZ1fZQoaAZoCWgPQwgLmpZYGRdkQJSGlFKUaBVN6ANoFkdAoYsfb9If83V9lChoBmgJaA9DCL+ZmC5EV2VAlIaUUpRoFU3oA2gWR0Chi3cf/3nIdX2UKGgGaAloD0MIbjSAt8DHZkCUhpRSlGgVTegDaBZHQKGLtkYoAn51fZQoaAZoCWgPQwgzNJ4IYj9hQJSGlFKUaBVN6ANoFkdAoYy6J9AoonV9lChoBmgJaA9DCBMteTyt5WFAlIaUUpRoFU3oA2gWR0ChjPm0NSZSdX2UKGgGaAloD0MIzlFHx9VqYkCUhpRSlGgVTegDaBZHQKGP1KPGQ0Z1fZQoaAZoCWgPQwjAIypUt+5lQJSGlFKUaBVN6ANoFkdAoZCMw5/9YXV9lChoBmgJaA9DCAN64c4F9mhAlIaUUpRoFU3oA2gWR0Chkyky+HrRdX2UKGgGaAloD0MIJ4kl5e6dZkCUhpRSlGgVTegDaBZHQKGTvl/6O5t1fZQoaAZoCWgPQwiDv1/MloFfQJSGlFKUaBVN6ANoFkdAoZXPT9bX6XV9lChoBmgJaA9DCB5rRga5OV5AlIaUUpRoFU3oA2gWR0Chlu8Udq+KdX2UKGgGaAloD0MIw5s1eN8WZUCUhpRSlGgVTegDaBZHQKGZGMJhOQB1fZQoaAZoCWgPQwhw0jQomjdjQJSGlFKUaBVN6ANoFkdAoZnlruYx+XV9lChoBmgJaA9DCFBxHHg1xmdAlIaUUpRoFU3oA2gWR0Chm4R02cawdX2UKGgGaAloD0MIdlJflnauZ0CUhpRSlGgVTegDaBZHQKGcFXKbKA91fZQoaAZoCWgPQwi4dqIkJKRwQJSGlFKUaBVNxAJoFkdAoZ2iesgdO3V9lChoBmgJaA9DCMCUgQNaQmZAlIaUUpRoFU3oA2gWR0ChnzTO5avBdX2UKGgGaAloD0MIcHoX70eQY0CUhpRSlGgVTegDaBZHQKGf5oL5RCR1fZQoaAZoCWgPQwjQCgxZXfhkQJSGlFKUaBVN6ANoFkdAoaBuzByjpXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 320, "n_steps": 2048, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 20, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV+QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMYy9Vc2Vycy9pZ29yL29wdC9hbmFjb25kYTMvZW52cy9weTM4cmwvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMYy9Vc2Vycy9pZ29yL29wdC9hbmFjb25kYTMvZW52cy9weTM4cmwvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "macOS-10.16-x86_64-i386-64bit Darwin Kernel Version 22.2.0: Fri Nov 11 02:03:51 PST 2022; root:xnu-8792.61.2~4/RELEASE_ARM64_T6000", "Python": "3.8.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1", "GPU Enabled": "False", "Numpy": "1.24.2", "Gym": "0.21.0"}}